A Wide Range of Basic Input Units for High Speed Input and Different Applications

- Receive ON/OFF signals from external devices into the PLC System to update I/O memory in the CPU Unit.
- New high-speed input models CJ1W-ID212 and CJ1W-ID233 are now available. These units can help to increase system throughput.

CJ1W-ID212

CJ1W-ID233

Features

- High-speed input models are available, meeting versatile applications.

ON Response Time: $15 \mu \mathrm{~s}$, OFF Response Time: $90 \mu \mathrm{~s}$

- Use 24-VDC, 100-VAC, and 200-VAC models to connect to devices with different types of outputs.
- The 24-VDC models can be connected to devices with either NPN or PNP outputs. There is no need to select the polarity. *1
- A digital filter in the Unit can be set from 0 to 32 ms to reduce the influence of external noise.
- Either a Fujitsu or MIL connector interface can be used. *2
- Several models of Terminal Block Conversion Units are available, making it easy to connect to external devices.
*1. The same polarity is used for the same common.
*2. For models with 32 or 64 inputs.

Ordering Information

International Standards

- The standards are abbreviated as follows: U: UL, U1: UL (Class I Division 2 Products for Hazardous Locations), C: CSA, UC: cULus, UC1: cULus (Class I Division 2 Products for Hazardous Locations), CU: cUL, N: NK, L: Lloyd, and CE: EC Directives.
- Contact your OMRON representative for further details and applicable conditions for these standards.

Input Units

Unit type	Product name	Specifications					$\begin{aligned} & \text { Current } \\ & \text { onsumption } \end{aligned}$ (A)		Model	Standards
		I/O points	Input voltage and current	Commons	External connection	No. of words allocated	5 V	24 V		
CJ1 Basic I/O Units	DC Input Units	8 inputs	12 to $24 \mathrm{VDC}, 10 \mathrm{~mA}$	Independent contacts	Removable terminal block	1 word	0.09	-	CJ1W-ID201	$\begin{aligned} & \text { UC1, N, L, } \\ & \text { CE } \end{aligned}$
		16 inputs	$24 \mathrm{VDC}, 7 \mathrm{~mA}$	16 points, 1 common	Removable terminal block	1 word	0.08	-	CJ1W-ID211	
		16 inputs (High speed)	$24 \mathrm{VDC}, 7 \mathrm{~mA}$	16 points, 1 common	Removable terminal block	1 word	0.13	-	CJ1W-ID212	N, L, CE
		32 inputs	$24 \mathrm{VDC}, 4.1 \mathrm{~mA}$	16 points, 1 common	Fujitsu connector	2 words	0.09	-	CJ1W-ID231	$\begin{aligned} & \text { UC1, N, L, } \\ & \mathrm{CE} \end{aligned}$
		32 inputs	$24 \mathrm{VDC}, 4.1 \mathrm{~mA}$	16 points, 1 common	MIL connector	2 words	0.09	-	CJ1W-ID232	
		32 inputs (High speed)	$24 \mathrm{VDC}, 4.1 \mathrm{~mA}$	16 points, 1 common	MIL connector	2 words	0.20	-	CJ1W-ID233	N, L, CE
		64 inputs	$24 \mathrm{VDC}, 4.1 \mathrm{~mA}$	16 points, 1 common	Fujitsu connector	4 words	0.09	-	CJ1W-ID261	$\begin{aligned} & \text { UC1, N, L, } \\ & \text { CE } \end{aligned}$
		64 inputs	$24 \mathrm{VDC}, 4.1 \mathrm{~mA}$	16 points, 1 common	MIL connector	4 words	0.09	-	CJ1W-ID262	
	AC Input Units	8 inputs	$\begin{aligned} & 200 \text { to } 24 \mathrm{VAC}, 10 \mathrm{~mA} \\ & (200 \mathrm{~V}, 50 \mathrm{~Hz}) \end{aligned}$	8 points, 1 common	Removable Terminal Block	1 words	0.08	-	CJ1W-IA201	
		16 inputs	$\begin{aligned} & 100 \text { to } 120 \mathrm{VAC}, 7 \mathrm{~mA} \\ & (100 \mathrm{~V}, 50 \mathrm{~Hz}) \end{aligned}$	16 points, 1 common	Removable Terminal Block	1 words	0.09	-	CJ1W-IA111	

Accessories

Connectors are not included for models with connectors. Either use one of the applicable connector listed below or use an applicable ConnectorTerminal Block Conversion Unit or I/O Relay Terminal. For details on wiring methods, refer to External Interface.

Applicable Connectors

Fujitsu Connectors for 32-input, 32-output, 64-input, 64-output, 32-input/32-output, and 16-input/16-output Units

Name	Connection	Remarks	Applicable Units	Model	Standards
40-pin Connectors	Soldered	FCN-361J040-AU Connector FCN-360C040-J2 Connector Cover 	Fujitsu Connectors: CJ1W-ID231(32 inputs): 1 per Unit CJ1W-ID261 (64 inputs): 2 per Unit CJ1W-OD231 (32 outputs): 1 per Unit CJ1W-OD261 (64 outputs): 2 per Unit CJ1W-MD261 (32 inputs, 32 outputs): 2 per Unit	C500-CE404	-
	Crimped	 FCN-363J040 Housing FCN-363J-AU Contactor FCN-360C040-J2 Connector Cover		C500-CE405	
	Pressure welded	FCN-367J040-AU/F		C500-CE403	
24-pin Connectors	Soldered	FCN-361JO24-AU Connector FCN-360C024-J2 Connector Cover	Fujitsu Connectors: CJ1W-MD231 (16 inputs, 16 outputs): 2 per Unit	C500-CE241	
	Crimped	FCN-363JO24 Socket FCN-363J-AU Contactor FCN-360C024-J2 Connector Cover		C500-CE242	
	Pressure welded	FCN-367J024-AU/F		C500-CE243	

MIL Connectors for 32-input, 32-output, 64-input, 64-output, 32-input/32-output, and 16-input/16-output Units

Name	Connection	Remarks	Applicable Units	Model	Standards
40-pin Connectors	Pressure welded	FRC5-AO40-3TOS	MIL Connectors: CJ1W-ID232/233 (32 inputs): 1 per Unit CJ1W-OD232/233/234 (32 outputs):1 per Unit CJ1W-ID262 (64 inputs): 2 per Unit CJ1W-OD262/263 (64 outputs): 2 per Unit CJ1W-MD263/563 (32 inputs, 32 outputs): 2 per Unit	XG4M-4030-T	-
	Crimped	-		XG5N-401*	
$\begin{aligned} & \text { 20-pin } \\ & \text { Connectors } \end{aligned}$	Pressure welded	FRC5-AO20-3TOS	MIL Connectors: CJ1W-MD232/233 (16 inputs, 16 outputs): 2 per Unit	XG4M-2030-T	-
	Crimped	-		XG5N-201*	

* Crimp Contacts are also required. Refer to page 20 for details.

Applicable Connector-Terminal Block Conversion Units

Type	Series	Number of poles	Wiring method	$\begin{gathered} \text { Terminal } \\ \text { type } \end{gathered}$	Size			Mounting		Common terminals	Bleeder resistance	Indicators	I/O Units	Model *	Standards
					Depth (mm)	Height (mm)	Width (mm)	$\begin{gathered} \hline \text { DIN } \\ \text { Track } \end{gathered}$	Screws						
PLCs	XW2R	34	Phillips screw					Yes	No	No	No	No	CJ1W-ID231 CJ1W-ID261	XW2R-J34GD-C1	-
				M3	50	48.05	130.7						CJ1W-ID232 CJ1W-ID233 CJ1W-ID262	XW2R-J34GD-C2	
			Slotted screw (rise up)										CJ1W-ID231 CJ1W-ID261	XW2R-E34GD-C1	
				(European type)	50	44.81	98.5						CJ1W-ID232 CJ1W-ID233 CJ1W-ID262	XW2R-E34GD-C2	
			Push-in spring										$\begin{aligned} & \text { CJ1W-ID231 } \\ & \text { CJ1W-ID261 } \end{aligned}$	XW2R-P34GD-C1	
				Clamp	50	44.81	98.5						CJ1W-ID232 CJ1W-ID233 CJ1W-ID262	XW2R-P34GD-C2	

Note: For the combination of Input Units with Connector-Terminal Block Conversion Units, refer to 2. Connecting Connector-Terminal Block Conversion Units.

* Representative models only. For details, refer to the XW2R series catalog (Cat. No. G077).

Connecting Cables for Connector-Terminal Block Conversion Units

Appearance	Connectors	Cable lenght [m]	Model
XW2Z-■ด口PF	One 40-pin Fujitsu Connector to One 40-pin MIL Connector	0.5	XW2Z-050PF
		1	XW2Z-100PF
		1.5	XW2Z-150PF
		2	XW2Z-200PF
		3	XW2Z-300PF
		5	XW2Z-500PF
$\text { XW2Z- } \square \square \mathrm{PM}$	One 40-pin MIL Connector to One 40-pin MIL Connector	0.5	XW2Z-050PM
		1	XW2Z-100PM
		1.5	XW2Z-150PM
		2	XW2Z-200PM
		3	XW2Z-300PM
		5	XW2Z-500PM

Applicable I/O Relay Terminals

Type	Series	Specifications						Size (horizontal mounting)			Mounting		Model	Standards
		Classification		Polarity	Number of points	Rated ON currentat contacts	Rated voltage	Horizontal (mm)	Vertical (mm)	Height (mm)	$\begin{gathered} \text { DIN } \\ \text { Track } \end{gathered}$	Screws		
Push-In Plus terminal block	G70V	Inputs	DC inputs	NPN	$\begin{array}{\|l} 16 \\ \text { (SPSTNO } \times 16 \text {) } \end{array}$	50 mA	24 VDC	143	90	56	Yes	Yes	G70V-SID16P *4	UC, CE (TÜV certified)
				PNP									G70V-SID16P-1 *4	
				NPN									G70V-SID16P-C16 *5	
				PNP									G70V-SID16P-1-C16*5	
		Outputs	Relay outputs	NPN	$\begin{aligned} & 16 \\ & (\text { SPDT } \times 16) \end{aligned}$	6 A/point, 10 A common							G70V-SOC16P *4	
				PNP									G70V-SOC16P-1 *4	
				NPN									G70V-SOC16P-C4 *6	
				PNP									G70V-SOC16P-1-C4 *	
Standard		Inputs	AC inputs	NPN	$\left.\begin{array}{\|l\|} \hline 16 \\ (S P S T N O \end{array}\right) \text { 16) }$	1A	100/(110) VAC	182	85	68	Yes	No	G7TC-IA16 AC100/110	U, C
							200/(220) VAC						G7TC-IA16 AC200/220	
			DC inputs				12 VDC						G7TC-ID16 DC12	
							24 VDC						G7TC-ID16 DC24	
							100/110 VDC						G7TC-ID16 DC100/110	
		Outputs	Relay outputs	NPN	$\begin{aligned} & 8 \\ & (\text { SPSTNO } \times 8) \end{aligned}$	5A	12 VDC	102					G7TC-OC08 DC12	
							24 VDC						G7TC-OC08 DC24	
					$\begin{aligned} & 16 \\ & \text { (SPSTNO } \times 16 \text {) } \end{aligned}$		12 VDC	182					G7TC-OC16 DC12	
							24 VDC						G7TC-OC16 DC24	
				PNP	$\begin{aligned} & 16 \\ & \text { (SPSTNO } \times 16 \text {) } \end{aligned}$		12 VDC						G7TC-OC16-1 DC12	
							24 VDC						G7TC-OC16-1 DC24	
Highcapacity socket	G70A *1 (Socket only)	Inputs	Relay inputs	NPN/ PNP	16 (SPDT $\times 16$ possiblewith G2R Relays)	100 mA	$\begin{aligned} & 110 \text { VDC } \\ & \text { max., } 240 \\ & \text { VAC max. } \\ & \text { *2 } \end{aligned}$	234	75	64	Yes	No	G70A-ZOC16-5	$\begin{aligned} & \text { U, C, CE } \\ & \text { (VDE } \\ & \text { certified) } \end{aligned}$
			Relay	NPN		10 A (Ter- minal blockal- lowable	24 VDC						G70A-ZOC16-3	
			outputs	PNP									G70A-ZOC16-4	
Spacesaving	Vertical type G70D-V	Outputs	$\begin{array}{\|l\|} \hline \text { Relay } \\ \text { outputs } \end{array}$	NPN	$\begin{aligned} & 16 \\ & (\text { SPSTNO } \times 16) \end{aligned}$	$\begin{array}{\|l\|} \hline 5 \mathrm{~A} \\ \text { or } 3 \mathrm{~A} * 3 \\ \hline \end{array}$	24 VDC	135	46	81	Yes	Yes	G70D-VSOC16	U, C, CE (VDE certified)
			$\begin{aligned} & \text { MOSFET } \\ & \text { relay } \\ & \text { outputs } \end{aligned}$			0.3 A							G70D-VFOM16	
	Flat type G70D		Relay outputs	NPN	$\begin{aligned} & 8 \\ & \hline \text { (SPSTNO } \times 8 \text {) } \end{aligned}$	5 A		68	93	44	Yes	Yes	G70D-SOC08	-
					$\begin{array}{\|l} 16 \\ \text { (SPSTNO } \times 16 \text {) } \end{array}$	3 A		156	51	39			G70D-SOC16	
				PNP	$\begin{array}{\|l} 16 \\ \text { (SPSTNO } \times 16 \text {) } \end{array}$	3 A							G70D-SOC16-1	
	\pm		MOSFET relay outputs	NPN	$\begin{array}{\|l} 16 \\ \hline \text { (SPSTNO } \times 16 \text {) } \end{array}$	0.3 A							G70D-FOM16	
				PNP									G70D-FOM16-1	
Highcapacity, spacesaving	G70R	Outputs	Relay outputs	NPN	$\begin{aligned} & 8 \\ & (\text { SPSTNO } \times 8) \end{aligned}$	10 A	24 VDC	136	93	55	Yes	Yes	G70R-SOC08 *7	-

${ }^{*}$. G70A is a I/O terminal socket product. Relay is not provided with the socket. Be sure to order a relay, timer separately.
*2. Each relay to be mounted must incorporate a coil that has proper specifications within the maximum rated voltage range.
*3. Eight or fewer points ON: 5 A, Nine or more points ON: 3 A.
*4. Internal common at terminal block: No internal connections
*5. Internal common at terminal block: Internal IO common 16 points internally connected
*6. Internal common at terminal block: Every 4 points internally connected at terminal block middle row.
*7. Product no longer available to order.
Note: 1. For the combination of Input Units with I/O Relay Terminal and Connecting Cables, refer to 3. Connecting I/O Relay Terminals.
2. Please refer to each Datasheet about details.
3. When the G7TC is used with an AC rated voltage, three rated currents can be used. If a coil voltage of 110 or 220 VAC is used, 50 Hz cannot be used.

Cables for I/O Relay Terminals

Type	Name	I/O Classification	Appearance	Cable length L (mm)		Models
Fujitsu connectors (24 pins)	Cables with Connectors (1:1) XW2Z-R $\square C$	16 I/O points		1,000		XW2Z-R100C
				1,500		XW2Z-R150C
				2,000		XW2Z-R200C
				3,000		XW2Z-R300C
				5,000		XW2Z-R500C
Fujitsu connectors (40 pins)	Cables with Connectors (1:2) XW2Z-RIDC- \square XW2Z-RO \square C- \square	32 input points	Straight length (without bends)	(A) 1,000	(B) 750	XW2Z-RI100C-75
				(A) 1,500	(B) 1,250	XW2Z-RI150C-125
				(A) 2,000	(B) 1,750	XW2Z-RI200C-175
				(A) 3,000	(B) 2,750	XW2Z-RI300C-275
				(A) 5,000	(B) 4,750	XW2Z-RI500C-475
		32 output points		(A) 1,000	(B) 750	XW2Z-RO100C-75
				(A) 1,500	(B) 1,250	XW2Z-RO150C-125
				(A) 2,000	(B) 1,750	XW2Z-RO200C-175
				(A) 3,000	(B) 2,750	XW2Z-RO300C-275
				(A) 5,000	(B) 4,750	XW2Z-RO500C-475
MIL connectors (20 pins)	Cables with Connectors(1:1)	16 I/O points		250		XW2Z-RI25C
				500		XW2Z-RI50C
	XW2Z-RI口C			250		XW2Z-RO25C
	XW2Z-RO-C			500		XW2Z-RO50C
MIL connectors (40 pins)	Cables with Connectors(1:2)	32 I/O points		(A) 500	(B) 250	XW2Z-RO50-25-D1
				(A) 750	(B) 500	XW2Z-R075-50-D1
				(A) 1,000	(B) 750	XW2Z-R0100-75-D1
				(A) 1,500	(B) 1,250	XW2Z-RO150-125-D1
				(A) 2,000	(B) 1,750	XW2Z-RO200-175-D1
				(A) 3,000	(B) 2,750	XW2Z-RO300-275-D1
				(A) 5,000	(B) 4,750	XW2Z-R0500-475-D1
	XW2Z-ROD- \square-D1, XW2Z-RID-D-D1			(A) 500	(B) 250	XW2Z-RI50-25-D1
				(A) 750	(B) 500	XW2Z-R175-50-D1
				(A) 1,000	(B) 750	XW2Z-RI100-75-D1
				(A) 1,500	(B) 1,250	XW2Z-RI150-125-D1
				(A) 2,000	(B) 1,750	XW2Z-RI200-175-D1
				(A) 3,000	(B) 2,750	XW2Z-RI300-275-D1
				(A) 5,000	(B) 4,750	XW2Z-RI500-475-D1

Note: Refer to the Datasheet for the XW2Z-R Cables for I/O Relay Terminals (Cat. No. G126).

Mountable Racks

Model	NJ system		CJ system (CJ1, CJ2)		CP1H system	NSJ system	
	CPU Rack	Expansion Rack	CPU Rack	Expansion Backplane	CP1H PLC	NSJ Controller	Expansion Backplane
CJ1W-ID201	10 Units	10 Units (per Expansion Rack)	10 Units	10 Units (per Expansion Backplane)	Not supported	Not supported	10 Units (per Expansion Backplane)
CJ1W-ID211							
CJ1W-ID212							
CJ1W-ID231							
CJ1W-ID232							
CJ1W-ID233							
CJ1W-ID261							
CJ1W-ID262							
CJ1W-IA201							
CJ1W-IA111							

Specifications

CJ1W-ID201 DC Input Unit (12 to 24-VDC, 8 Points)

- The signal names of the terminals are the device variable names.

The device variable names are the names that use "Jxx" as the device name.

External connection
and terminal-device variable diagram

- Polarity of the input power supply can be connected in either direction.
- The signal names of the terminals are the device variable names.

The device variable names are the names that use "Jxx" as the device name.
*1. The ON response time will be 20μ s maximum and OFF response time will be $400 \mu \mathrm{~s}$ maximum even if the response time are set to 0 ms due to internal element delays.
*2. Terminal numbers A0 to A8 and B0 to B8 are used in the external connection and terminal-device variable diagrams. They are not printed on the Units.
Note: Although 16 I/O bits (1 word) are allocated, only 8 of these can be used for external I/O.

CJ1W-ID211 DC Input Unit (24 VDC, 16 Points)

- Polarity of the input power supply can be connected in either direction.
- The signal names of the terminals are the device variable names.

The device variable names are the names that use "Jxx" as the device name.
*1. The ON response time will be 20μ s maximum and OFF response time will be $400 \mu \mathrm{~s}$ maximum even if the response time are set to 0 ms due to internal element delays.
*2. Terminal numbers A 0 to A 8 and B 0 to B 8 are used in the external connection and terminal-device variable diagrams. They are not printed on the Units.

CJ1W-ID212 DC Input Unit (24 VDC, 16 Points)

- Polarity of the input power supply can be connected in either direction.
- The signal names of the terminals are the device variable names.

The device variable names are the names that use "Jxx" as the device name.
*1. The ON response time will be $15 \mu \mathrm{~s}$ maximum and OFF response time will be $90 \mu \mathrm{~s}$ maximum even if the response time are set to 0 ms due to internal element delays.
*2. Terminal numbers A0 to A8 and B0 to B8 are used in the external connection and terminal-device variable diagrams. They are not printed on the Units.

CJ1W-ID231 DC Input Unit (24 VDC, 32 Points)

- The input power polarity can be connected in either direction.
- Be sure to wire both pins A9 and A18 (COM0), and set the same polarity for both pins.
- Be sure to wire both pins B9 and B18 (COM1), and set the same polarity for both pins.
- The signal names of the terminals are the device variable names.

The device variable names are the names that use "Jxx" as the device name

* The ON response time will be 20μ s maximum and OFF response time will be $400 \mu \mathrm{~s}$ maximum even if the response times are set to 0 ms due to internal element delays.
Note: Observe the following restrictions when connecting to a 2-wire sensor.
- Make sure the input power supply voltage is larger than the ON voltage (19 V) plus the residual voltage of the sensor (approx. 3 V).
- Use a sensor with a minimum load current of 3 mA min.
- Connect bleeder resistance if you connect a sensor with a minimum load current of 5 mA or higher

CJ1W-ID232 DC Input Unit (24 VDC, 32 Points)

- The input power polarity can be connected in either direction.
- Be sure to wire both pins 23 and 24 (COMO), and set the same polarity for both pins.
- Be sure to wire both pins 3 and 4 (COM1), and set the same polarity for both pins.
- The signal names of the terminals are the device variable names.

The device variable names are the names that use "Jxx" as the device name.

[^0]CJ1W-ID233 DC Input Unit (24 VDC, 32 Points)

- The input power polarity can be connected in either direction.
- Be sure to wire both pins 23 and 24 (COMO), and set the same polarity for both pins.
- Be sure to wire both pins 3 and 4 (COM1), and set the same polarity for both pins.
- The signal names of the terminals are the device variable names.

The device variable names are the names that use "Jxx" as the device name.

[^1]CJ1W-ID261 DC Input Unit (24 VDC, 64 Points)

CJ1W-ID262 DC Input Unit (24 VDC, 64 Points)

Name	64-point DC Input Unit with MIL Connector	
Model	CJ1W-ID262	
Rated Input Voltage	24 VDC	
Rated Input Voltage Range	20.4 to 26.4 VDC	
Input Impedance	$5.6 \mathrm{k} \Omega$	
Input Current	4.1 mA typical (at 24 VDC)	
ON Voltage/ON Current	19.0 VDC min./3 mA min.	
OFF Voltage/OFF Current	5 VDC max./1 mA max.	
ON Response Time	$8.0 \mathrm{~ms} \mathrm{max}$. (Can be set to between 0 and 32 in the Setup.) *	
OFF Response Time	$8.0 \mathrm{~ms} \mathrm{max}$. (Can be set to between 0 and $32 \mathrm{in} \mathrm{the} \mathrm{Setup)}$.	
Number of Circuits	64 (16 points/common, 4 circuits)	
Number of Simultaneously ON Points	50% (8 points/common) simultaneously ON (at 24 VDC) (Refer to the following illustrations.)	
Insulation Resistance	$20 \mathrm{M} \Omega$ min. between external terminals and the GR terminal (100 VDC)	
Dielectric Strength	1,000 VAC between the external terminals and the GR terminal for 1 minute at a leakage current of 10 mA max.	
Internal Current Consumption	90 mA max.	
Weight	110 g max.	
Accessories	None	
Circuit Configuration	- The signal names of the terminals are the device variable names. The device variable names are the names that use "Jxx" as the device name.	Number of Simultaneously ON Points vs. Ambient Temperature Characteristic
External connection and terminal-device variable diagram	CN1	CN2
	- The input power polarity can be connected in either direction. - Be sure to wire both pins 23 and 24 (COMO) of CN1, and set the same polarity for both pins. - Be sure to wire both pins 3 and 4 (COM1) of CN1, and set the same polarity for both pins. - The signal names of the terminals are the device variable names. The device variable names are the names that use "Jxx" as the device name.	- The input power polarity can be connected in either direction. - Be sure to wire both pins 23 and 24 (COM2) of CN2, and set the same polarity for both pins. - Be sure to wire both pins 3 and 4 (COM3) of CN2, and set the same polarity for both pins. - The signal names of the terminals are the device variable names. The device variable names are the names that use "Jxx" as the device name.

[^2]CJ1W-IA201 AC Input Unit (200 VAC, 8 Points)

CJ1W-IA111 AC Input Unit (100 VAC, 16 points)

*3. Terminal numbers A0 to A8 and B0 to B8 are used in the external connection and terminal-device variable diagrams. They are not printed on the Units.

Bit Allocations for Input Unit
8-point Input Unit

Allocated CIO word		Signal name (CJ/NJ)
CIO	Bit	
Wd m (Input)	00	IN0/Jxx_Ch1_In00
	01	IN1/Jxx_Ch1_In01
	$:$	$:$
	06	IN6/Jxx_Ch1_In06
	07	IN7/Jxx_Ch1_In07
	08	-
	09	-
	$:$	$:$
	14	-
	15	-

32-point Input Unit

Allocated CIO word		Signal name (CJ/NJ)
Wd m (Input)	Bit	
	00	INO/Jxx_Ch1_In00
	01	IN1/Jxx_Ch1_In01
	$:$	$:$
	14	IN14/Jxx_Ch1_In14
Wd m+1 (Input)	15	IN15/Jxx_Ch1_In15
	00	IN0/Jxx_Ch2_In00
	01	IN1/Jxx_Ch2_In01
	$:$	$:$
	14	IN14/Jxx_Ch2_In14

16-point Input Unit

Allocated CIO word		Signal name (CJ/NJ)
CIO	Bit	
	00	IN0/Jxx_Ch1_In00
	01	IN1/Jxx_Ch1_In01
	$:$	$:$
	14	IN14/Jxx_Ch1_In14
	15	IN15/Jxx_Ch1_In15

64-point Input Unit

Allocated CIO word		Signal name ($\mathrm{CJ} / \mathrm{NJ}$)
CIO	Bit	
Wd m (Input)	00	IN0/Jxx_Ch1_In00
	01	IN1/Jxx_Ch1_In01
	:	:
	14	IN14/Jxx_Ch1_In14
	15	IN15/Jxx_Ch1_In15
Wd m+1 (Input)	00	INO/Jxx_Ch2_In00
	01	IN1/Jxx_Ch2_In01
	:	:
	14	IN14/Jxx_Ch2_In14
	15	IN15/Jxx_Ch2_In15
Wd m+2 (Input)	00	IN0/Jxx_Ch3_In00
	01	IN1/Jxx_Ch3_In01
	:	:
	14	IN14/Jxx_Ch3_ln14
	15	IN15/Jxx_Ch3_In15
Wd m+3 (Input)	00	IN0/Jxx_Ch4_In00
	01	IN1/Jxx_Ch4_In01
	:	:
	14	IN14/Jxx_Ch4_In14
	15	IN15/Jxx_Ch4_In15

External Interface

8-point/16-point Units (18-point Terminal Blocks)

32-point Units (Models with 40-point Fujitsu Connector or MIL Connector)

64-point Units (Models with Two 40-point Fujitsu Connectors or MIL Connector)

Wiring Basic I/O Units with Terminal Blocks

Electric Wires

The following wire gauges are recommended.

Terminal Block Connector	Wire Size
18 -terminal	AWG 22 to $18\left(0.32\right.$ to $\left.0.82 \mathrm{~mm}^{2}\right)$

Crimp terminals

Use crimp terminals (M3) having the dimensions shown below.

I/O Unit Wiring Methods

An I/O Unit can be connected to an external device by any of the following three methods.

1. User-provided Cable

An I/O Unit can be directly connected to an external device by using a connector.

A	User-provided cable
B	External device
\mathbf{C}	Connector

2. Connector-Terminal Block Conversion Unit

Use a Connecting Cable to connect to a Connector-Terminal Block Conversion Unit.
Converting the I/O Unit connector to a screw terminal block or push-in terminal block makes it easy to connect external devices.

A	Connecting Cable for Connector-Terminal Block Conversion Unit XW2Z
B	Connector-Terminal Block Conversion Unit XW2R
C	Conversion to a screw terminal block

3. I/O Relay Terminal

Use a Connecting Cable to connect to an I/O Relay Terminal.
The I/O specifications can be converted to relay outputs and AC inputs by connecting the I/O Relay Terminal to an I/O Unit.

A	Connecting Cable for I/O Relay Terminals XW2Z-R
B	I/O Relay Terminals
	I/O Terminal Socket
G70A	
	Or, conversion to relay outputs and AC inputs.

1. Using User-made Cables with Connector

Available Connectors

Use the following connectors when assembling a connector and cable.
32- and 64-point Basic I/O Units with Fujitsu-compatible Connectors
Applicable Units

Model		Specifications
CJ1W-ID231	Input Unit, 24 VDC, 32 inputs	Pins
CJ1W-ID261	Input Unit, 24 VDC, 64 inputs	40

Applicable Cable-side Connectors

Connection	Pins	OMRON set	Fujitsu parts
Solder-type	40	C500-CE404	Socket: FCN-361J040-AU Connector cover: FCN-360C040-J2
Crimped	40	C500-CE405	Socket: FCN-363J040 Connector cover: FCN-360C040-J2 Contacts: FCN-363J-AU
Pressure-welded	40	C500-CE403	FCN-367J040-AU/F

32- and 64-point Basic I/O Units with MIL Connectors

Applicable Units

Model		Specifications
CJ1W-ID232 CJ1W-ID233	Input Unit, 24 VDC, 32 inputs	Pins
CJ1W-ID262	Input Unit, 24 VDC, 64 inputs	40

Applicable Cable-side Connectors

Connection	Pins	OMRON set	DDK parts
Pressure-welded	40	XG4M-4030-T *1	FRC5-A040-3T0S
Crimped	40	XG5N-401 *2	HU-400S2-001
	-	Crimp Contacts for XG5N *3 XG5W-0232 (loose contacts: 100 pieces) XG5W-0232-R (reel contacts: 10,000 pieces)	HU-111S

*1. Socket and Stain Relief set.
*2. Crimp Contacts (XG5W-0232) are sold separately.
*3. Applicable wire size is AWG 28 to 24. For applicable conductor construction and more information, visit the OMRON website at www.ia.omron.com

Wire Size

We recommend using cable with wire gauges of AWG 28 to 24 (0.08 to $0.2 \mathrm{~mm}^{2}$). Use cable with external wire diameters of 1.61 mm max.

Crimping Tools

The following models are recommended for crimping tools and pressure-welding tools for Fujitsu connectors.
Tools for Crimped Connectors (Fujitsu Component)

Product Name	Model			
Hand Crimping Tool	FCN-363T-T005/H			
Contact Withdrawal Tool	FCN-360T-T001/H			
Tools for Pressure-welded Connectors (Fujitsu Component)				
Product Name				Model
Hand Press	FCN-707T-T101/H			
Cable Cutter	FCN-707T-T001/H			
Locator Plate	FCN-367T-T012/H			

The following models are recommended for tools for OMRON MIL connectors.
Tools for Pressure-welded Connectors (OMRON)

Product Name		Model
Pressure-welding Tool	XY2B-0002	
Attachment	XY2B-1007	
Tools for Crimped Connectors (OMRON)		Model
Product Name		
Manual Crimping Tool	XY2B-7007	

2. Connecting Connector-Terminal Block Conversion Units

Connection Patterns for Connector-Terminal Block Conversion Units

Combination of I/O Units with Connector-Terminal Block Conversion Units

Unit	$\begin{gathered} \text { I/O } \\ \text { capacity } \end{gathered}$	Number of connectors	Polarity	Connection pattern	Connecting Cable *	Connector-Terminal Block Conversion Unit	Wiring method	Common terminals
CJ1W-ID231	32 inputs	1 Fujitsu connector	NPN/PNP	A	XW2Z-■ด口PF	XW2R-J34GD-C1	Phillips screw	No
						XW2R-E34GD-C1	Slotted screw (rise up)	
						XW2R-P34GD-C1	Push-in spring	
CJ1W-ID232	32 inputs	1 MIL connector	NPN/PNP	A	XW2Z-पППPM	XW2R-J34GD-C2	Phillips screw	No
						XW2R-E34GD-C2	Slotted screw (rise up)	
						XW2R-P34GD-C2	Push-in spring	
CJ1W-ID233	32 inputs	1 MIL connector	NPN/PNP	A	XW2Z-■ $\square \square P M$	XW2R-J34GD-C2	Phillips screw	No
						XW2R-E34GD-C2	Slotted screw (rise up)	
						XW2R-P34GD-C2	Push-in spring	
CJ1W-ID261	64 inputs	2 Fujitsu connectors	NPN/PNP	B	$\begin{aligned} & \text { XW2Z-पดमPF } \\ & \text { (2 pcs) } \end{aligned}$	XW2R-J34GD-C1 (2 Units)	Phillips screw	No
						XW2R-E34GD-C1 (2 Units)	Slotted screw (rise up)	
						XW2R-P34GD-C1 (2 Units)	Push-in spring	
CJ1W-ID262	64 inputs	2 MIL connectors	NPN/PNP	B	$\begin{aligned} & \text { XW2Z- } \begin{array}{l} \text { (2 pcs) } \end{array} \text { (PM } \end{aligned}$	XW2R-J34GD-C2 (2 Units)	Phillips screw	No
						XW2R-E34GD-C2 (2 Units)	Slotted screw (rise up)	
						XW2R-P34GD-C2 (2 Units)	Push-in spring	

* The box \square is replaced by the cable length.

Note: For details, refer to the XW2R series catalog (Cat. No. G077).

3. Connecting I/O Relay Terminals

Connection Patterns for I/O Relay Terminals

Combination of I/O Units with I/O Relay Terminals and Connecting Cables

I/O Units				Connection pattern	Connecting Cables		I/O Relay Terminals			
Model	I/O capacity	External connectors	Polarity		Model *1	Quantity required	Model	$\begin{gathered} \text { I/O } \\ \text { points } \end{gathered}$	Quantity required	Wiring method
CJ1W-ID231	32 inputs	1 Fujitsu connector (40 p)	Sinking/ Sourcing (NPN/PNP)	A	XW2Z-RI $\square \mathrm{C}-\square$	1	G70V-SID16P(-1)(-C16) *2	16	2	Push-in spring
							G7TC-ID/IA16	16		Screw terminal
							G70A-ZIM16-5 *3	16		
CJ1W-ID232	32 inputs	1 MIL connector$(40 \mathrm{p})$	Sinking/ Sourcing (NPN/PNP)	A	XW2Z-RO■-■-D1	1	G70V-SID16P(-1)(-C16) *2	16	2	Push-in spring
							G7TC-ID/IA16	16		Screw terminal
							G70A-ZIM16-5	16		
CJ1W-ID233	32 inputs	1 MIL connector (40 p)	Sinking/ Sourcing (NPN/PNP)	A	XW2Z-RO■-口-D1	1	G70V-SID16P(-1)(-C16) *2	16	2	Push-in spring
							G7TC-ID/IA16	16		Screw terminal
							G70A-ZIM16-5*3	16		
CJ1W-ID261	64 inputs	2 Fujitsu connectors (40 p)	Sinking/ Sourcing (NPN/PNP)	B	XW2Z-RI $\square \mathrm{C}-\square$	2	G70V-SID16P(-1)(-C16) *2	16	4	Push-in spring
							G7TC-ID/IA16	16		Screw terminal
							G70A-ZIM16-5 *3	16		
CJ1W-ID262	64 inputs	2 MIL connectors (40 p)	Sinking/ Sourcing (NPN/PNP)	B	XW2Z-RO■- \square-D1	2	G70V-SID16P(-1)(-C16) *2	16	4	Push-in spring
							G7TC-ID/IA16	16		Screw terminal
							G70A-ZIM16-5 *3	16		

*1. The box \square is replaced by the cable length.
*2. Either NPN inputs or PNP inputs can be used.
*3. G70A-ZIM16-5 is a I/O terminal socket products. Relay is not provided with the socket. Be sure to order a relay, timer separetely. (with G2R Relays mounted: SPDT $\times 16$)

Dimensions

8-point/16-point Units (18-point Terminal Blocks)
CJ1W-ID201
CJ1W-ID211
CJ1W-ID212
CJ1W-IA201
CJ1W-IA111

32-point Units (Input Units)
With Fujitsu-compatible Connector (40-pin $\times 1$)
CJ1W-ID231

With MIL Connector (40-pin $\times 1$)
CJ1W-ID232
CJ1W-ID233

64-point Units (Input Units)

With Fujitsu-compatible Connector (40-pin $\times 2$)
CJ1W-ID261

With MIL Connector (40-pin $\times 2$)

CJ1W-ID262

Related Manuals

Name	Cat. No.	Contents
CJ-series CJ2 CPU Unit Hardware User's Manual CJ2H-CPU6ロ-EIP CJ2H-CPU6 CJ2M-CPU	W472	Describes the following for CJ2 CPU Units: - Overview and features - Basic system configuration - Part nomenclature and functions - Mounting and setting procedure - Remedies for errors - Also refer to the Software User's Manual (W473).
SYSMAC CJ Series CJ1H-CPU $\square \square \mathrm{H}-\mathrm{R}, \mathrm{CJ} 1 \mathrm{G} / \mathrm{H}-\mathrm{CPU} \square \square \mathrm{H}, \mathrm{CJ} 1 \mathrm{G}-\mathrm{CPU} \square \square \mathrm{P}$, CJ1G-CPU \qquad , CJ1M-CPU \square Programmable Controllers Operation Manual	W393	Provides an outlines of and describes the design, installation, maintenance, and other basic operations for the CJ-series PLCs.
NJ-series CPU Unit Hardware User's Manual NJ501- \square	W500	An introduction to the entire NJ -series system is provided along with the following information on a Controller built with an NJ501 CPU Unit. - Features and system configuration - Introduction - Part names and functions - General specifications - Installation and wiring - Maintenance and inspection Use this manual together with the NJ-series CPU Unit Software User's Manual (Cat. No. W501).

Read and understand this catalog.
Please read and understand this catalog before purchasing the products. Please consult your OMRON representative if you have any questions or comments.

Warranties.

(a) Exclusive Warranty. Omron's exclusive warranty is that the Products will be free from defects in materials and workmanship for a period of twelve months from the date of sale by Omron (or such other period expressed in writing by Omron). Omron disclaims all other warranties, express or implied.
(b) Limitations. OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, ABOUT NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OF THE PRODUCTS. BUYER ACKNOWLEDGES THAT IT ALONE HAS DETERMINED THAT THE
PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE.
Omron further disclaims all warranties and responsibility of any type for claims or expenses based on infringement by the Products or otherwise of any intellectual property right. (c) Buyer Remedy. Omron's sole obligation hereunder shall be, at Omron's election, to (i) replace (in the form originally shipped with Buyer responsible for labor charges for removal or replacement thereof) the non-complying Product, (ii) repair the non-complying Product, or (iii) repay or credit Buyer an amount equal to the purchase price of the non-complying Product; provided that in no event shall Omron be responsible for warranty, repair, indemnity or any other claims or expenses regarding the Products unless Omron's analysis confirms that the Products were properly handled, stored, installed and maintained and not subject to contamination, abuse, misuse or inappropriate modification. Return of any Products by Buyer must be approved in writing by Omron before shipment. Omron Companies shall not be liable for the suitability or unsuitability or the results from the use of Products in combination with any electrical or electronic components, circuits, system assemblies or any other materials or substances or environments. Any advice, recommendations or information given orally or in writing, are not to be construed as an amendment or addition to the above warranty.
See http://www.omron.com/global/ or contact your Omron representative for published information.
Limitation on Liability; Etc.
OMRON COMPANIES SHALL NOT BE LIABLE FOR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS OR PRODUCTION OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED IN CONTRACT, WARRANTY, NEGLIGENCE OR STRICT LIABILITY.
Further, in no event shall liability of Omron Companies exceed the individual price of the Product on which liability is asserted.

Suitability of Use.

Omron Companies shall not be responsible for conformity with any standards, codes or regulations which apply to the combination of the Product in the Buyer's application or use of the Product. At Buyer's request, Omron will provide applicable third party certification documents identifying ratings and limitations of use which apply to the Product. This information by itself is not sufficient for a complete determination of the suitability of the Product in combination with the end product, machine, system, or other application or use. Buyer shall be solely responsible for determining appropriateness of the particular Product with respect to Buyer's application, product or system. Buyer shall take application responsibility in all cases.
NEVER USE THE PRODUCT FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY OR IN LARGE QUANTITIES WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCT(S) IS PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

Programmable Products.
Omron Companies shall not be responsible for the user's programming of a programmable Product, or any consequence thereof.

Performance Data.
Data presented in Omron Company websites, catalogs and other materials is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of Omron's test conditions, and the user must correlate it to actual application requirements. Actual performance is subject to the Omron's Warranty and Limitations of Liability.

Change in Specifications

Product specifications and accessories may be changed at any time based on improvements and other reasons. It is our practice to change part numbers when published ratings or features are changed, or when significant construction changes are made. However, some specifications of the Product may be changed without any notice. When in doubt, special part numbers may be assigned to fix or establish key specifications for your application. Please consult with your Omron's representative at any time to confirm actual specifications of purchased Product.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Omron manufacturer:
Other Similar products are found below :
LY1-AC12 LY1D-2-5S-AC120 LY2F-AC200/220 LY4N-DC12 M165-JG-12D M165-JR-24D M165-JY-24D CS1G-CPU43-E CS1WCN118 CS1WOD231 M22CAT1 61F-GP-NT AC110 M2BJ-B24 M7E-01DGN2-B M7E-08DRN2 M7E-20DRN1 M7E-HRN2 M8PHWS MA15DP21CC MA6APC4 F03-02 SUS316 F150LTC20 F3SJ-A0245P30 F3UVHM F3WD052C5M MC-S1XCPC3 MG2-US-AC24 MGN2A-DC24 MK2EP-UA-AC6V MK2PNIAC240 MK310E-DC24 MM4KPDC125 MM4XPAC120 G2Q-184P-V-DC5 G2R-1114P-V-US-DC5 G2R13SNDDC24 G2R-1-AC240 G2R2SDDC12S G2R-2-SN 110VAC (S) G2RL-2A4-CF-DC48 G2U-114P-US-DC12 G2V-234P-US-DC48 G3CA-8H-AC100/110/120 G3NA-610B DC5-24 G3PA-210B-US-DC24 G3RV-D03SL DC12 G3VM-61PR1(TR05) G4A-1A-PDC24 G4Q-212S G4S-112P-US-B-DC24

[^0]: * The ON response time will be 20μ s maximum and OFF response time will be $400 \mu \mathrm{~s}$ maximum even if the response times are set to 0 ms due to internal element delays.
 Note: Observe the following restrictions when connecting to a 2-wire sensor.
 - Make sure the input power supply voltage is larger than the ON voltage (19 V) plus the residual voltage of the sensor (approx. 3 V).
 - Use a sensor with a minimum load current of 3 mA min.
 - Connect bleeder resistance if you connect a sensor with a minimum load current of 5 mA or higher.

[^1]: * The ON response time will be 15μ s maximum and OFF response time will be $90 \mu \mathrm{~s}$ maximum even if the response times are set to 0 ms due to internal element delays.
 Note: Observe the following restrictions when connecting to a 2 -wire sensor.
 - Make sure the input power supply voltage is larger than the ON voltage (19 V) plus the residual voltage of the sensor (approx. 3 V).
 - Use a sensor with a minimum load current of 3 mA min.
 - Connect bleeder resistance if you connect a sensor with a minimum load current of 5 mA or higher.

[^2]: * The ON response time will be 120μ s maximum and OFF response time will be $400 \mu \mathrm{~s}$ maximum even if the response times are set to 0 ms due to internal element delays.
 Note: Observe the following restrictions when connecting to a 2 -wire sensor.
 - Make sure the input power supply voltage is larger than the ON voltage (19 V) plus the residual voltage of the sensor (approx. 3 V).
 - Use a sensor with a minimum load current of 3 mA min.
 - Connect bleeder resistance if you connect a sensor with a minimum load current of 5 mA or higher.

