Sealed Subminiature Basic Switch

Ultra-small and Highly Sealed

- Degree of protection conforms to JIS Waterproof standard and IEC IP67.
(Excluding the terminals on terminal models)
- Wide range of operating temperatures from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
- Gold-alloy crossbar contact and coil spring offer long durability and high contact reliability.

RoHS Compliant

Model Number Legend

1. Actuator-D2JW-01	
None : Pin plunger	2. Contact form
K1A : Short hinge lever	1: SPDT
K1 : Hinge lever	2: SPST-NC (Molded lead wire models only)
K2 : Hinge roller Lever	3: SPST-NO (Molded lead wire models only)
K3 : Simulated roller hinge lever	3. Terminals
	None: Solder terminals
	-MD : Molded lead wires

List of Models

Actuator		Terminals	Contact form	Model
Pin plunger	-	Solder terminals	SPDT	D2JW-011
		Molded lead wires	SPDT	D2JW-011-MD
			SPST-NC	D2JW-012-MD
			SPST-NO	D2JW-013-MD
Short hinge lever	م,	Solder terminals	SPDT	D2JW-01K1A1
		Molded lead wires	SPDT	D2JW-01K1A1-MD
			SPST-NC	D2JW-01K1A2-MD
			SPST-NO	D2JW-01K1A3-MD
Hinge Lever Models		Solder terminals	SPDT	D2JW-01K11
		Molded lead wires	SPDT	D2JW-01K11-MD
			SPST-NC	D2JW-01K12-MD
			SPST-NO	D2JW-01K13-MD
Hinge Roller Lever Models	R	Solder terminals	SPDT	D2JW-01K21
		Molded lead wires	SPDT	D2JW-01K21-MD
			SPST-NC	D2JW-01K22-MD
			SPST-NO	D2JW-01K23-MD
Simulated Roller Hinge Lever Models	م	Solder terminals	SPDT	D2JW-01K31
		Molded lead wires	SPDT	D2JW-01K31-MD
			SPST-NC	D2JW-01K32-MD
			SPST-NO	D2JW-01K33-MD

Contact form

Contact Specifications

Contact	Specification	Crossbar
	Material	Gold alloy
	Gap (standard value)	0.5 mm
Inrush current	NC	0.1 A max.
	NO	$0.1 \mathrm{~A} \mathrm{max}$.
Minimum applicable load (see note)	5 VDC 1 mA	

Ratings

Rated voltage	Resistive load
30 VDC	0.1 A

Note. The above rating values apply under the following test conditions.
(1) Ambient temperature: $20 \pm 2^{\circ} \mathrm{C}$
(2) Ambient humidity: $65 \pm 5 \%$
(3) Operating frequency: 30 operations $/ \mathrm{min}$

Characteristics

Permissible operating speed		1 mm to $250 \mathrm{~mm} / \mathrm{s}$ (for pin plunger models)
Permissible operating frequency	Mechanical	240 operations/min
	Electrical	30 operations/min
Insulation resistance		$100 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC with insulation tester)
Contact resistance (initial value)	Solder terminal models	$100 \mathrm{~m} \Omega$ max.
	Molded lead wire models	$140 \mathrm{~m} \Omega$ max.
Dielectric strength * 1	Between terminals of the same polarity	600 VAC 50/60 Hz 1 min
	Between current-carrying metal parts and ground	1,000 VAC 50/60 Hz 1min
	Between each terminal and non-current-carrying metal parts	1,000 VAC 50/60 Hz 1min
Vibration resistance *2	Malfunction	10 to $55 \mathrm{~Hz}, 1.5 \mathrm{~mm}$ double amplitude
Shock resistance	Durability	1,000 m/s² \{approx. 100G\} max.
	Malfunction *2	$200 \mathrm{~m} / \mathrm{s}^{2}$ \{approx. 20G\} max.
Durability * 3	Mechanical	1,000,000 operations min. (60 operations/min)
	Electrical	100,000 operations min. (30 operations/min)
Degree of protection	Solder terminal models	IEC IP67 (excluding the terminals on terminal models)
	Molded lead wire models	IEC IP67
Ambient operating temperature		```\(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) (at ambient humidity of \(60 \%\) max.) (with no icing or condensation)```
Ambient operating humidity		35% to 98% (for $+5^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$)
Weight		Approx. 0.6 g (for pin plunger models with terminals)

Note. The data given above are initial values.
*1. The dielectric strength values shown apply for use with Separator (refer to page 4).
*2. For the pin plunger models, the above values apply for use at the free position and total travel position. For the lever models, they apply at the total travel position. Close or open circuit of the contact is 1 ms max.
*3. For testing conditions, consult your OMRON sales representative.

Mounting Holes (Unit: mm)

Dimensions (Unit: mm) /Operating Characteristics

Dimensions and operating characteristics of other actuator models for lead wire models are omitted in the illustration below, as the dimensions other than the termial part and operatiing characteristics is common with Solder terminal models.

-Pin plunger models

D2JW-011

Operating characteristics

Operating Force	OF Max.	$2.45 \mathrm{~N}\{250 \mathrm{gf}\}$
Releasing Force	RF Min.	$0.98 \mathrm{~N}\{100 \mathrm{gf}\}$
Pretravel	PT Max.	0.6 mm
Overtravel	OT Min.	0.3 mm
Movement Differential	MD Max.	0.1 mm
Operating Position	OP	$8.1 \pm 0.3 \mathrm{~mm}$

-Short hinge lever models D2JW-01K1A1

Operating Force Releasing Force	$\begin{aligned} & \hline \mathrm{OF} \\ & \mathrm{RF} \end{aligned}$	Max. Min.	$\begin{gathered} \hline 1.15 \mathrm{~N}\{117 \mathrm{gf}\} \\ 0.23 \mathrm{~N}\{23 \mathrm{gf}\} \end{gathered}$
Pretravel	PT	Max.	5.4 mm
Overtravel	OT	Min.	0.7 mm
Movement Differential	MD	Max.	0.5 mm
Operating Position	OP		$8.4 \pm 0.8 \mathrm{~mm}$

Note 1. Unless otherwise specified, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.
Note 2. The operating characteristics are for operation in the A direction (\downarrow).
-Hinge lever models D2JW-01K11

Operating Force	OF	Max.	$0.80 \mathrm{~N}\{82 \mathrm{gf}\}$
Releasing Force	RF	Min.	$0.15 \mathrm{~N}\{16 \mathrm{gf}\}$
Pretravel	PT	Max.	6.4 mm
Overtravel	OT	Min.	1.4 mm
Movement Differential	MD	Max.	0.7 mm
Operating Position	OP		$8.4 \pm 0.8 \mathrm{~mm}$

-Simulated roller lever hinge models

D2JW-01K31

-Hinge roller lever models D2JW-01K21

- Molded lead wire models

 D2JW-01 \square []-MD

Note. When ordering, replace \square with the code for the actuator and contact form that you need.

Operating Force	OF	Max.	$2.45 \mathrm{~N}\{250 \mathrm{gf}\}$
Releasing Force	RF	Min.	$0.98 \mathrm{~N}\{100 \mathrm{gf}\}$
Pretravel	PT	Max.	0.6 mm
Overtravel	OT	Min.	0.3 mm
Movement Differential	MD	Max.	0.1 mm
Operating Position	OP	$8.1 \pm 0.3 \mathrm{~mm}$	

[^0]
Precautions

„Please refer to "Basic Switches Common Precautions" for correct use.

Cautions
-Terminal Connection

Before soldering the lead wire to the terminal, first insert the lead wire conductor through the terminal hole.
Complete the soldering at the iron tip temperature till $250^{\circ} \mathrm{C}$ within 3 seconds, and do not apply any external force for 1 deteriorate the characteristics of the Switch.

- Degree of Protection

- The Switch was tested and found to meet the conditions necessary to meet the following standard given below. The test checks for water intrusion after immersion for a specified time period, not for switching operation underwater.
JIS C0920:
Degrees of protection provided by enclosures of electrical apparatus (IP Code)
IEC 60529:
Degrees of protection provided by enclosures (IP Code)
Degree of protection: IP67

> (check water intrusion after immersion for 30 min. submerged 1 m underwater)

-Protection Against Chemicals

Prevent the Switch from coming into contact with oil or chemicals.
Otherwise, damage to or deterioration of Switch materials may result.

Correct Use
 - Mounting

Use M2.3 mounting screw with plane washers or spring washers to securely mount the Switch. Tighten the screws to a torque of 0.20 to $0.29 \mathrm{~N} \cdot \mathrm{~m}$ \{2 to $3 \mathrm{kgf} \cdot \mathrm{cm}\}$.

-Wiring Molded Lead Wire Models

When wiring molded lead wire models, ensure that there is no weight applied on the wire and that the wire is not bent.
Otherwise, damage to the Switch or deterioration in the sealing may result.

-Using Micro Loads

Even when using micro load models within the operating range, if inrush/surge current occurs, it may increase the contact wear and so decrease durability. Therefore, insert a contact protection circuit where necessary.

Separator (sold separately)

SEPARATOR FOR D2JW

Note. The material of the separator is EAVTC (epoxy alkyd/varnish tetron cloth).

Please check each region's Terms \& Conditions by region website.

OMRON Corporation

Electronic and Mechanical Components Company

Regional Contact

Americas	Europe
https://www.components.omron.com/	http://components.omron.eu/
Asia-Pacific	China
https://ecb.omron.com.sg/	https://www.ecb.omron.com.cn/
Korea	Japan
https://www.omron-ecb.co.kr/	https://www.omron.co.jp/ecb/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Basic / Snap Action Switches category:
Click to view products by Omron manufacturer:

Other Similar products are found below :
5SM901-S12 5SM9-S12N195 602EN532 602EN535-RB 602HE5-RB1 604HE162 604HE223-6B 624HE17-RB 6HM82 6HM89 6SE1 6SX1-H58 7050021670599106 MBD5B1 MBH2731 73-316-0012 EXD-AR20 $792119237 \underline{79218589}$ 7AS12

MIL30126AB6BBMD4A12XAU ML-1155 ML-1376 831010C3.0 831090C2.EL 83131904 84212012 8AS239 8HM73-3 8SX26-H33
914CE1-6G PL-100 11SM1077-H4 11SM1077-H58 11SM1-TN107 11SM405 11SM8423-H2 11SX37-T 11SX48-H58 11SM2442-T
11SM76-T 11SM77-H58 11SM77-T 11SM863-T 11SM866 A7CN-1M-1-LEFT A831700C7.0 121EN187-R 121EN188-R

[^0]: Note 1. Unless otherwise specified, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.
 Note 2. The operating characteristics are for operation in the A direction (\downarrow).

