
OMRON

D6TMEMS Thermal Sensors

Contactless Measurement OMRON MEMS Thermal Sensors are able to detect the slightest temperature changes

MEMS Thermal (IR sensor) measures the surface temperature of objects without touching them when the thermopile element absorbs the amount of radiant energy from the object.

High Precision

World's highest-class stable temperature output*

*According to OMRON's research as of February 2021, except for D6T-32L-01A.

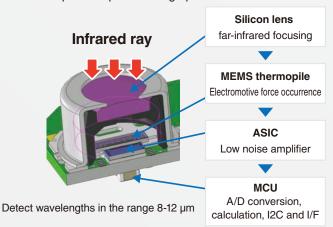
Past problem

Output was unstable in applications requiring high precision

Stable temperature output

-High Precision- Why?

Achieves the world's highest level*2 of SNR*1 by combining the in-house designed and manufactured ASIC and MEMS


OMRON designs and manufactures both ASIC and MEMS thermopiles in-house.

OMRON's unique digital filter and process optimization reduce the noise of

ASIC, achieving the world's highest-level SNR.

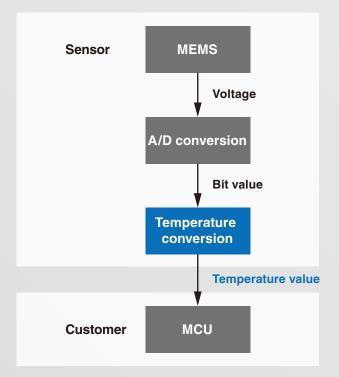
Product Structure

OMRON's unique MEMS technology allows combining thermopile elements and ASICs into one package, resulting in ultra-compact footprint and high precision.

☐ MEMS thermopile detection principle

The sensor utilizes the seebeck effect in which thermoelectric force is generated due to the temperature difference that occurs across the junction points of two different types of metal.

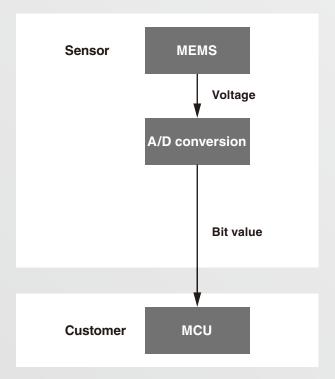
 $^{^{\}star}1$ SNR: Signal-to-Noise Ratio. Compares the level of a signal to the level of background noise.


^{*2} According to OMRON's research as of February 2021, except for D6T-32L-01A.

Easy connection

Direct temperature value output allows easy software design

OMRON D6T

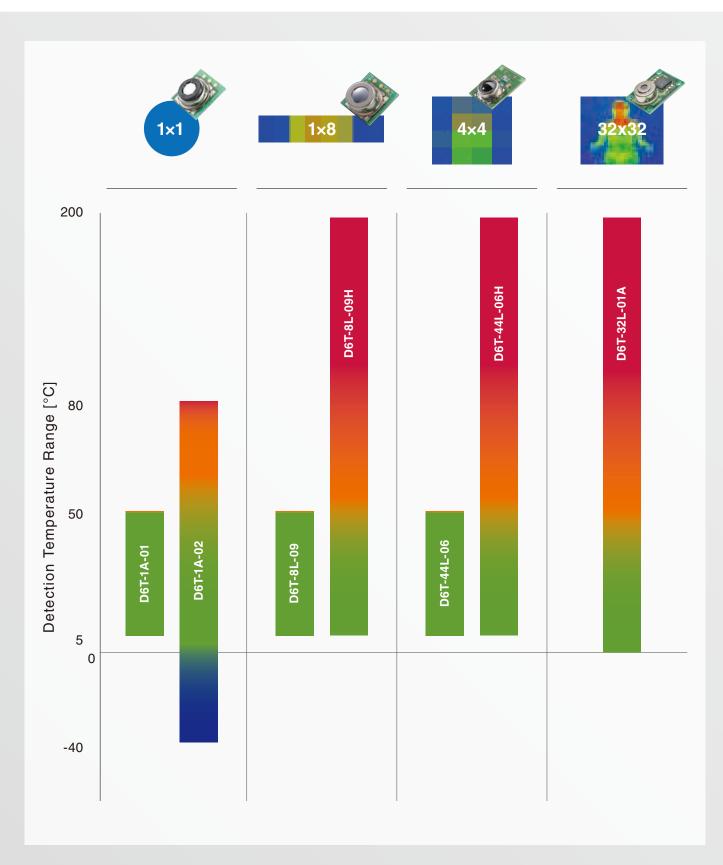


CAN packaged thermal sensor from a competitor

Bit value output

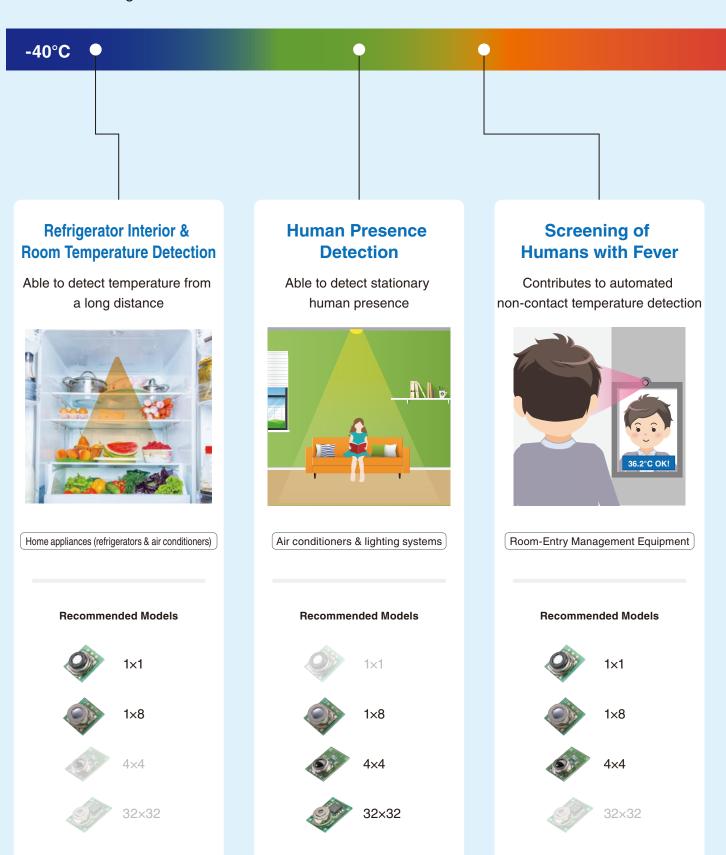
Provision of Development Support Tool

MEMS thermal sensors can be connected to **OMRON sensor evaluation boards**.


The below 3 types of platform are applicable. Evaluation can be performed easily by connecting thermal sensor, evaluation board, and harness to the platform.

	Sensor	Harness for Connection	Evaluation Board	Platform	Sample Code
	D6T	-	2JCIE-EV01-RP1	Raspberry Pi *1	https://github.com/omron-devhub/d6t-2jcieev01-raspberrypi
			2JCIE-EV01-AR1	Arduino *2	https://github.com/omron-devhub/d6t-2jcieev01-arduino
			2JCIE-EV01-FT1	ESP32 Feather *3	https://github.com/omron-devhub/d6t-2jcieev01-arduino

^{*1.} Raspberry Pi is a registered trademark of the Raspberry Pi Foundation. *2. Arduino is a registered trademark of Arduino LLC and Arduino SRL. *3. Feather is a registered trademark of Adafruit Industries LLC.


Number of elements and temperature lineup

Variation of the number of elements (1 to 1024) and the temperature range (-40 to 200°C)

Example Applications

The sensors can be used in a wide range of applications, depending on the temperature measurement range.

200°C

Abnormal High Temperature Monitoring

Contributes to prevention of fires due to overheating

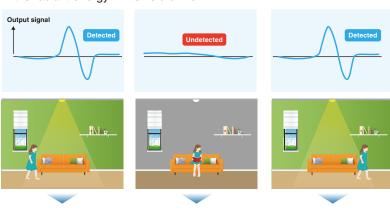
Transformers & distribution boards

Recommended Models

1×1

1×8

4×4

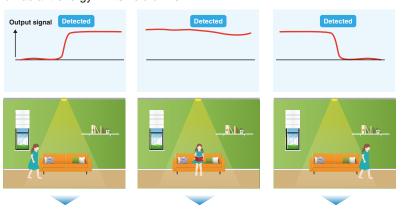

32×32

Comparison with Pyroelectric Sensor

Both the pyroelectric sensor and non-contact MEMS thermal sensor can detect even the slightest amount of radiant energy from objects such as infrared radiation and convert them into temperature readings. However, unlike pyroelectric sensor that relies on motion detection, non-contact MEMS thermal sensor is able to detect the presence of stationary humans (or objects).

Pyroelectric sensor

Converts temperature readings only when detecting "temperature changes in the radiant energy" in its field of view.


Able to detect human (object) motion

Unable to detect stationary human (object) presence

Able to detect human (object) motion

MEMS thermal sensor (thermopile)

Converts temperature readings by "continuously detecting the temperature of radiant energy" in its field of view

Able to detect both stationary and motion state of humans (objects).

Viewing Angle and Measurement Area

Choose your preferred sensor viewing angle to meet your application needs.

Model	D6T-1A-01	D6T-1A-02	D6T-8L-09	D6T-8L-09H	D6T-44L-06	D6T-44L-06H	D6T-3	2L-01A
Appearance								
Number of elements	1(1	x1)	8(1	x8)	16(4	1x4)	1024(32x32)
Viewing angle X-direction Y-direction	X = 58.0° Y = 58.0°	X = 26.5° Y = 26.5°	X = :	54.5° 5.5°	X=4 Y=4			90.0° 90.0°
Size of measurement area	← Distance →	x	← Distance →	ZIZZA X	← Distance →		← Distance →	X
Distance 10 cm	X = 11 cm Y = 11 cm	X = 4.7 cm Y = 4.7 cm		10 cm 1.0 cm	X = 8 Y = 8			20 cm 20 cm
Distance 50 cm	X = 55 cm Y = 55 cm	X = 24 cm Y = 24 cm		52 cm 1.8 cm	X = 4 Y = 4			100 cm 100 cm
Distance 1 m	X = 111 cm Y = 111 cm	X = 47 cm Y = 47 cm	X = 1 Y = 1	03 cm 0 cm	X = 8 Y = 8			200 cm 200 cm
Distance 2 m	X = 222 cm Y = 222 cm	X = 94 cm Y = 94 cm	X = 2 Y = 2	06 cm 0 cm	X = 10 Y = 10			400 cm 400 cm
Distance 3 m	X = 333 cm Y = 333 cm	X = 141 cm Y = 141 cm	X = 3 Y = 3	09 cm 0 cm	X = 24 Y = 29			600 cm 600 cm

^{*.} The sizes of measurement areas indicated above are for reference only.

^{*.} The size of the measurement area changes according to sensor mounting angle

D6T MEMS Thermal Sensors

MEMS Non-Contact Thermal Sensor for Contactless Measurement

- Achieves the world's highest level² of SNR¹ by combining the inhouse designed and manufactured ASIC and MEMS
- Direct temperature value output allows easy software design
- Variation of the number of elements (1 to 1024) and the temperature range (-40 to 200°C)
- 1. SNR: Signal-to-Noise Ratio. Compares the level of a signal to the level of background noise.
- *2. According to OMRON's research as of February 2021, except for D6T-32L-01A.

RoHS Compliant

Refer to Safety Precautions on page 18.

Ordering Information

Thermal Sensors

Element type	Model	Shape		
1×1	D6T-1A-01			
	D6T-1A-02	No o		
1×8	D6T-8L-09			
	D6T-8L-09H	W. SOO		
4×4	D6T-44L-06			
	D6T-44L-06H	AT A A		
32×32	D6T-32L-01A	9 1 1 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		

Accessories (Sold separately)

Туре	Model
Cable Harness	D6T-HARNESS-02

Others

MEMS thermal sensors can be connected to OMRON sensor evaluation boards.

The below 3 types of platform are applicable. Evaluation can be performed easily by connecting thermal sensor, evaluation board, and harness to the platform.

Platform	Evaluation Board	Harness for connection (Evaluation Board - D6T)	Sample Source Code
For Raspberry Pi *1	2JCIE-EV01-RP1	2JCIE-HARNESS-01	https://github.com/omron-devhub/d6t-2jcieev01-raspberrypi
For Arduino *2	2JCIE-EV01-AR1	2JCIE-HARNESS-01	https://github.com/omron-devhub/d6t-2jcieev01-arduino
For ESP32 Feather *3	2JCIE-EV01-FT1	2JCIE-HARNESS-01	https://github.com/omron-devhub/d6t-2jcieev01-arduino

For details of evaluation boards and sample source codes, refer to the following website. (https://components.omron.com/sensor/evaluation-board/2jcie)

- *1. Raspberry Pi is a registered trademark of the Raspberry Pi Foundation.
- *2. Arduino is a registered trademark of Arduino LLC and Arduino SRL.
- 3. Feather is a registered trademark of Adafruit Industries LLC.

Model Number Legend

D6T-<u></u>_-<u></u>_ <u></u>_

(1) Number of elements

1A : 1 (1 × 1) 8L : 8 (1 × 8) 44L : 16 (4 × 4) 32L : 1024 (32 × 32)

(2) Viewing angle

01 : X direction, Y direction=58.0°
02 : X direction, Y direction=26.5°
09 : X direction=54.5°, Y direction=5.5°
06 : X direction=44.2°, Y direction=45.7°
01A : X direction, Y direction=90°

(3) Special Functions

H : High-temperature type Non-display : Standard sensor

Ratings, Specifications, and Functions

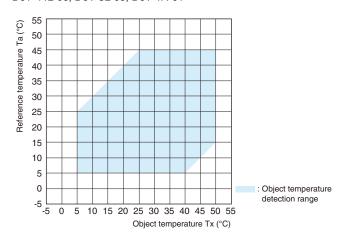
Ratings

Item Model	D6T-1A-01	D6T-1A-02	D6T-8L-09	D6T-8L-09H	D6T-44L-06	D6T-44L-06H	D6T-32L-01A	
Power supply voltage	4.5 to 5.5 VDC							
Storage temperature range	-20 to 80°C	-40 to 80°C	-40 to 80°C -20 to 80°C -10 to 60°C				-20 to 80°C	
Storage temperature range		1	(with r	o icing or condens	sation)		'	
Operating temperature range	0 to 60°C	-40 to 80°C	0 to 60°C		0 to 50°C		-10 to 70°C	
Operating temperature range	(with no icing or condensation)							
Ctore as humidity years	95% max.	95% max.	95%	max.	85%	max.	95% max.	
Storage humidity range		1	(with r	o icing or condens	sation)		'	
On a vating the maidite van a a	20% to 95%	20% to 95%	20% to	95%	20% t	o 85%	20% to 95%	
Operating humidity range		1	(with r	o icing or condens	sation)		'	

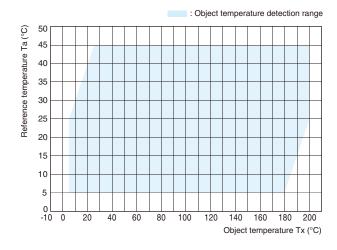
Characteristics

Item	Model	D6T-1A-01	D6T-1A-02	D6T-8L-09	D6T-8L-09H	D6T-44L-06	D6T-44L-06H	D6T-32L-01A
View angle *1	X direction	58.0°	26.5°	54.5°		44.2°		90°
view arigie	Y direction	58.0°	26.5°	5.5°		45.7°		90°
Object temperature output accuracy *2	Accuracy 1	±1.5°C max. Measurement co (1) Tx = 25°C, Ta (2) Tx = 45°C, Ta (3) Tx = 45°C, Ta	Ta = 25°C					Within ±3.0°C Measurement conditions: Vcc = 5.0 V Tx = 25°C, Ta = 25°C Central 16x16-pixel area
Current consumption		3.5 mA typical 5 mA typical				19 mA typical		

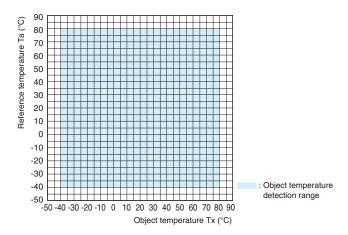
Functions

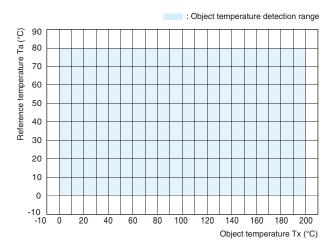

Item	Model	D6T-1A-01	D6T-1A-02	D6T-8L-09	D6T-8L-09H	D6T-44L-06	D6T-44L-06H	D6T-32L-01A	
Object temperature detection range *2		5 to 50°C	-40 to 80°C	5 to 50°C	5 to 200°C	5 to 50°C	5 to 200°C	0 to 200°C	
Ambient temperature range *2	detection	5 to 45°C	-40 to 80°C	5 to 45°C	5 to 45°C	5 to 45°C	5 to 45°C	0 to 80°C	
Output specifications		Digital values that correspond to the object temperature (Tx) and reference temperature (Ta) are output from a serial communications port.							
Output form (Object temperature detection)		Binary code (10 t	mes the detected	temperature (°C))	Binary code (5 times the detected temperature (°C))	Binary code (10 times the detected temperature (°C)			
Output form (Reference temperatu sensor)	re inside the	Binary code (10 t	mes the detected	temperature (°C))					
Communications form		I2C compliant							
Temperature resolution	n (NETD) *3	0.02°C (Data update cycle 100 msec)	0.06°C (Data update cycle 100 msec)	0.03°C (Data update cycle 250 msec)	0.03°C (Data update cycle 250 msec)	0.06°C (Data update cycle 300 msec)	0.06°C (Data update cycle 300 msec)	0.33°C*4 (Data update cycle 200 msec)	

- 1. Refer to Field of View Characteristics.
- *2. Refer to Object Temperature Detection Range.
- *3. Reference data
- *4. Taken to be the average value of the central 4 pixels.

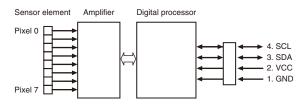

D6T

Object Temperature Detection Range


D6T-44L-06, D6T-8L-09, D6T-1A-01


D6T-44L-06H, D6T-8L-09H

D6T-1A-02

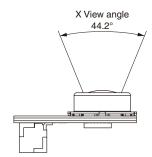

D6T-32L-01A

Connections

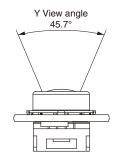
Thermal Sensor Configuration Diagram

<D6T-8L-09> <D6T-8L-09H>

Note: The D6T-44L-06 has pixels 0 to 15. The D6T-44L-06H has pixels 0 to 15. The D6T-1A-01 has pixel 0. The D6T-1A-02 has pixel 0. The D6T-32L-01A has pixel 0 to 1023.

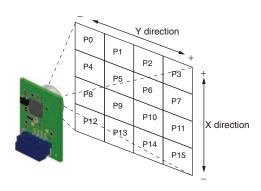

Terminal Arrangement

Terminal	Name	Function	Remarks
1	GND	Ground	
2	VCC	Positive power supply voltage input	
3	SDA	Serial data I/O line	Connect the open-drain SDA terminal to a pull-up resistor.
4	SCL	Serial clock input	Connect the open-drain SCL terminal to a pull-up resistor.


Field of View Characteristics

D6T-44L-06 D6T-44L-06H

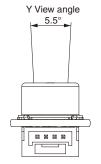
Field of View in X Direction



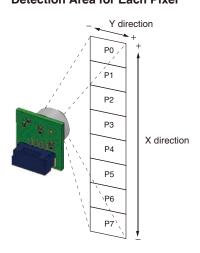
Field of View in Y Direction

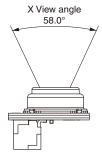
Note: Definition of view angle: Using the maximum sensor output as a reference, the angular range where the Sensor output is 50% or higher when the angle of the Sensor is changed is defined as the View angle.

Detection Area for Each Pixel

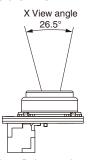


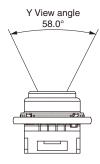
D6T-8L-09 D6T-8L-09H

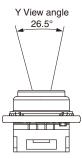




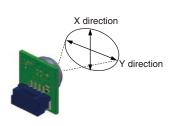
Note: Definition of view angle: Using the maximum Sensor output as a reference, the angular range where the Sensor output is 50% or higher when the angle of the Sensor is changed is defined as the view angle.


Detection Area for Each Pixel

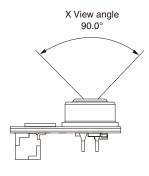

D6T-1A-01 Field of View in X Direction


D6T-1A-02 Field of View in X Direction

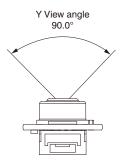
Field of View in Y Direction



Field of View in Y Direction

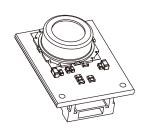


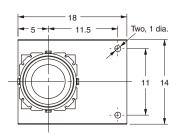
Note: Definition of view angle: Using the maximum Sensor output as a reference, the angular range where the Sensor output is 50% or higher when the angle of the Sensor is changed is defined as the view angle.

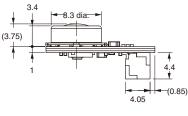

Detection Area for Each Pixel

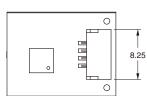
D6T-32L-01A Field of View in X Direction

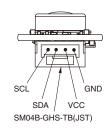
Field of View in Y Direction

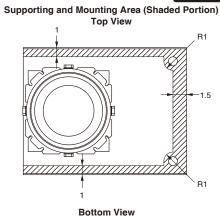

Note: Definition of view angle: Using the maximum Sensor output as a reference, the angular range where the Sensor output is 50% or higher when the angle of the Sensor is changed is defined as the view angle.

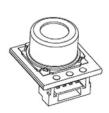

Detection Area for Each Pixel

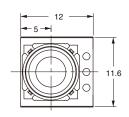


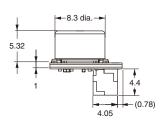

(Unit: mm)

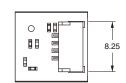

D6T-44L-06 D6T-44L-06H



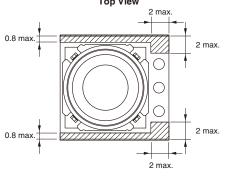


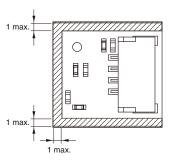

CAD Data




Note: Due to insulation distance limitations, do not allow metal parts to come into contact with the Sensor.

D6T-8L-09 D6T-8L-09H

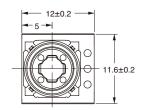


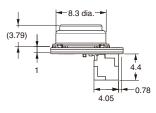


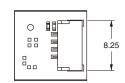
CAD Data

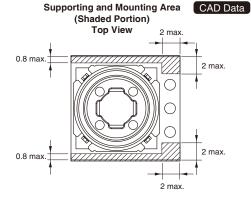
Supporting and Mounting Area (Shaded Portion) Top View

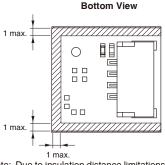
Bottom View

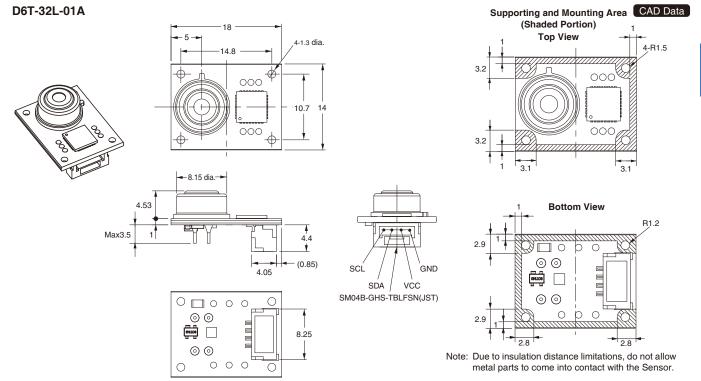


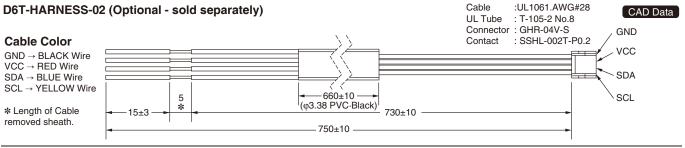

Note: Due to insulation distance limitations, do not allow metal parts to come into contact with the Sensor.


Note: Unless otherwise specified, a tolerance of ± 0.3 mm applies to all dimensions.


D6T-1A-01 D6T-1A-02






Note: Due to insulation distance limitations, do not allow metal parts to come into contact with the Sensor.

SDA

SM04B-GHS-TB(JST)

VCC

Note: Unless otherwise specified, a tolerance of ± 0.3 mm applies to all dimensions.

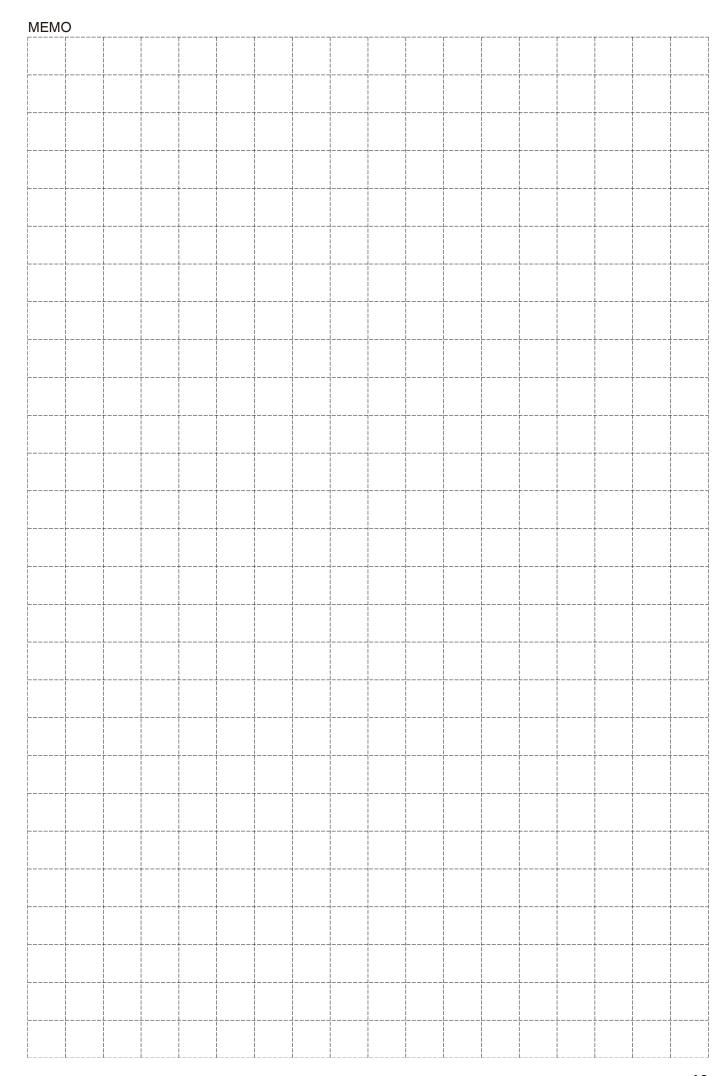
Safety Precautions

Precautions for Correct Use

Installation

 The sensor may not achieve the characteristics given in this datasheet due to the ambient environment or installation location. Before using the Sensor, please acquire an adequate understanding and make a prior assessment of Sensor characteristics in your actual system.

Operating Environment


- Do not use the Sensor in locations where dust, dirt, oil, and other foreign matter will adhere to the lens. This may prevent correct temperature measurements.
- Do not use the Sensor in any of the following locations.
 - Locations where the Sensor may come into contact with water or oil
 - Outdoors
 - Locations subject to direct sunlight.
 - Locations subject to corrosive gases (in particular, chloride, sulfide, or ammonia gases).
 - · Locations subject to extreme temperature changes
 - · Locations subject to icing or condensation.
 - · Locations subject to excessive vibration or shock.

Noise Countermeasures

- The Sensor does not contain any protective circuits. Never subject it to an electrical load that exceeds the absolute maximum ratings for even an instance. The circuits may be damaged. Install protective circuits as required so that the absolute maximum ratings are not exceeded.
- Keep as much space as possible between the Sensor and devices that generates high frequencies (such as high-frequency welders and high-frequency sewing machines) or surges.
- Attach a surge protector or noise filter on nearby noise-generating devices (in particular, motors, transformers, solenoids, magnetic coils, or devices that have an inductance component).
- In order to prevent inductive noise, separate the connector of the Sensor from power lines carrying high voltages or large currents. Using a shielded line is also effective.
- If a switching regulator is used, check that malfunctions will not occur due to switching noise from the power supply.

Handling

- This Sensor is a precision device. Do not drop it or subject it to excessive shock or force. Doing so may damage the Sensor or change its characteristics. Never subject the connector to unnecessary force. Do not use a Sensor that has been dropped.
- Take countermeasures against static electricity before you handle the Sensor.
- Turn OFF the power supply to the system before you install the Sensor. Working with the Sensor while the power supply is turned ON may cause malfunctions.
- Secure the Sensor firmly so that the optical axis does not move
- Install the Sensor on a flat surface. If the installation surface is not even, the Sensor may be deformed, preventing correct measurements.
- Do not install the Sensor with screws. Screws may cause the resist to peel from the board. Secure the Sensor in a way that will not cause the resist to peel.
- · Always check operation after you install the Sensor.
- Use the specified connector (GHR-04 from JST) and connect it securely so that it will not come off. If you solder directly to the connector terminals, the Sensor may be damaged.
- Make sure to wire the polarity of the terminals correctly. Incorrect polarity may damage the Sensor.
- · Never attempt to disassemble the Sensor.
- Do not use the cable harness to the other product.

Information of Related Products

MEMS Thermal Sensor User's Manual

Catalog No. A284-E1

Catalog No.

X211-E1

2JCIE-EV **Sensor Evaluation Board**

Catalog No. A297-E1

D6F **MEMS Flow Sensor**

Sensor Selection Guide

Catalog No. Y232-E1

Please check each region's Terms & Conditions by region website.

OMRON Corporation Electronic and Mechanical Components Company

Regional Contact

Americas

https://components.omron.com/

Asia-Pacific

https://ecb.omron.com.sg/

https://www.omron-ecb.co.kr/

Europe

http://components.omron.eu/

China

https://www.ecb.omron.com.cn/

Japan

https://www.omron.co.jp/ecb/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Sensor Fixings & Accessories category:

Click to view products by Omron manufacturer:

Other Similar products are found below:

F03-01 SUS304 BINIL 8000-5130 FH-AP1 PH-1-10M PH-1-20M PH-2-30M AC201 R4 ADI-LC3S EC18-WELL PC-15015 K35-4 A-1923 SS-12143 STA12 AP4-T PH-1-50M R6 D01051301 43912557-020 MF-1 D=3.2 BGN-035 E39-L7 ZX-SB11 D01070602 606072 606075 Y92ES12PVC4A10ML Y92ES12PVC4S5ML SA9Z-F11 Z49-SF1 ZFV-XMF2 E4R-R12A-CS3M010 28810-2 ZX-SW11E V3 CCS-PL-LDR2-70 E4R-R12A-CS3M020 BS-1T CHITAN F03-01 CHITAN CCS-PD2-1012 ZX-SFW11E V3 PH-2-90M PH-2-5M XMLZL008 AC244 28810-1 PH-1-40M SS-12225 32043-500 81532111