OmROn

Photoelectric switch with built-in amplifier (long distance) in plastic housing

E3G

Retroreflective Models

- Sensing Distance of 10 m , with polarized light to detect shiny objects.
- Operation stability monitored ba the stability indicator.

Distance-setting Models

- Distance setting models with a long 2 m sensing distance incorporate a teaching function.
- Set sensing area (zone setting) function allows detection of shiny objects with uneven surface.

Common Features

- Meets IEC IP67 requirements.
- M12 rotary connector, pre-wired or terminal block connection

Features

Retroreflective Models

Though the Size Is Compact, the Sensing Distance Is as Long as 10 m .
Replace the conventional through-beam model with the retroreflective model for saving wiring and installation space.

Easy monitoring of Operation stability by means of stability indicator.

Distance-setting

Distance-setting Models with a Long 2-m Sensing Distance Incorporate a Teaching Function
Sensitivity adjustment without being influenced by background objects is possible by simply pressing a button. Useful for teaching without a sensing object.

Easy Optimum Sensing Distance Adjustments
Teaching with and without a sensing object ensures highly accurate detection without influence from the background.

Zone Setting Function

Effective for detecting glossy objects, which were difficult to detect with conventional sensors. (D-ON)

General

Select either transistor (NPN/PNP selectable) or relay output. Three connection methods (plus a model with a timer function). Select either a DC power supply or a variable power
supply: 24 V to 240 VAC or 12 to 240 VDC).
IEC Standard IP67 Water Proofing

M12 Rotary Connector Available on Models with DC Power Supplies

Application

Ordering Information

Sensors					\square Red light \square Infrared light	
Sensor type	Shape	Connection method	Sensing distance	Timer function	Model	
					NPN/PNP selector	Relay contact output
Retroreflective Models (with M.S.R. Function)	\leftrightarrows	Pre-wired	3510 m *	---	E3G-R13-G	---
		Connector type			E3G-R17-G	
					---	E3G-MR19-G
		Terminal block		ON or OFF delay 0 to 5 s (adjustable)		E3G-MR19T-G
Distancesetting		Pre-wired	$\stackrel{\text { White paper } 300 \times 300 \mathrm{~mm}}{ } 0.2 \text { to } 2 \mathrm{~m}$	---	E3G-L73	---
		Connector type			E3G-L77	
						E3G-ML79-G
		Terminal block		ON or OFF delay 0 to 5 s (adjustable)	---	E3G-ML79T-G

* Values in parentheses indicate the minimum required distance between the sensor and reflector.

Accessories (Order Separately)

Reflectors

Shape	Sensing distance (typical)	Model	Quantity	Remarks
	$10 \mathrm{~m}(500 \mathrm{~mm})$ *	E39-R2	1	---
	$6 \mathrm{~m}(100 \mathrm{~mm})$ *	E39-R1S	1	---

* Values in parentheses indicate the minimum required distance between the sensor and reflector.

Terminal Protection Cover for Side-pullout Cable

Shape	Model	Quantity	Applicable type	Remarks
			E3G-MR19(T)-G	Provided with rubber bushing and cap for
	E39-L129-G	1	E3G-ML79(T)-G pullout prevention in horizontal direction	

Mounting Brackets

Shape	Model	Quantity	Applicable type	Remarks

Sensor I/O Connectors

Cable	Shape		Cable length		Model
Standard cable	Straight		2 m	3 -wire type	XS2F-D421-DC0-A
			5 m		XS2F-D421-GC0-A
	L-shaped		2 m		XS2F-D422-DC0-A
			5 m		XS2F-D422-GC0-A

Rating/Performance

* Values in parentheses indicate the minimum required distance between the sensor and reflector.

Sensor type		Retroreflective Models (M.S.R. function)				Distance-setting			
Item	Model	E3G-R13-G	E3G-R17-G	E3G-MR19-G	E3G-MR19T-G	E3G-L73	E3G-L77	E3G-ML79-G	E3G-ML79T-G
Shock resistance		$500 \mathrm{~m} / \mathrm{s}^{2} 3$ times in each of X, Y and Z directions							
Protective structure		IEC 60529 IP67 (with Protective Cover attached)							
Connection method		Pre-wired (standard length: 2 m)	M12 Connector	Terminal blo		Pre-wired (standard length: 2 m)	M12 Connector	Terminal block	
Weight (Packed state)		$\begin{aligned} & \text { Approx. } \\ & 150 \mathrm{~g} \\ & \hline \end{aligned}$	Approx. 50 g	Approx. 150 g			Approx. 50 g	Approx. 150 g	
Material	Case	PBT (polybutylene terephthalate)							
	Lens	Acrylics (PMMA)							
	Mounting Brackets	Stainless steel (SUS304)							
Accessories		Instruction sheet, and screwdriver for adjustment				Instruction sheet			

Output Circuit Diagram

NPN output

Model	Operating status of output transistor	Timing chart	Mode selection switch	Output circuit
$\begin{aligned} & \text { E3G-R13-G } \\ & \text { E3G-R17-G } \\ & \text { E3G-L73 } \\ & \text { E3G-L77 } \end{aligned}$	Light ON		L ON (LIGHT ON) D ON (DARK ON)	* Set the NPN or PNP selector to NPN Connector Pin Arrangement

PNP output

Model	Operating status of output transistor	Timing chart	Mode selection switch	Output circuit
$\begin{aligned} & \text { E3G-R13-G } \\ & \text { E3G-R17-G } \\ & \text { E3G-L73 } \\ & \text { E3G-L77 } \end{aligned}$	Light ON Dark ON		L ON (LIGHT ON) D ON (DARK ON)	

Relay contact output

For ON and OFF, delay timers vary independently.
Note: Td1, Td2: Delay time (0 to 5 s), T1: Any period longer than delay time, T2: Any period shorter than delay time
Connectors (Sensor I/O connectors)

Class	Wire, outer jacket color	Connector pin No.	Application
For DC	Brown	(1)	Power supply (+V)
	-	(2)	-
	Blue	(3)	Power sup- ply (0 V)
	Black	(4)	Output

Note: Pin 2 is not used.

Characteristic data (typical)

E3G-L/ML Distance-setting Models
Spot Diameter vs. Sensing Distance

Sensing Object Size vs. Setting Distance

Sensing Zone (in NORMAL mode)

Sensing Object Angle Characteristics (Up and Down)

Sensing Zone in ZONE Mode

Sensing Object Angle (Left and Right)

Inclination angle (\varnothing°)

Close-range Characteristics

Nomenclature

Retroreflective Models
E3G-R13-G (Pre-wired model)
E3G-R17-G (Connector model)

E3G-MR19-G (Terminal Block Model)
E3G-MR19T-G (Terminal Block Model with Timer)

Distance-setting
E3G-L73 (Pre-wired model)
E3G-L77 (Connector model)

E3G-ML79-G (Terminal Block Model)
E3G-ML79T-G (Terminal Block Model with Timer)

Operation

E3G-L/ML
Adjustment Steps

Pro- ce- dure	Operation
1	Install, wire, and turn on the Sensor.
2	Perform distance setting (teaching). Refer to "Distance Setting (Teaching)".
3	Check that the mode selector is set to RUN.

Distance Setting (Teaching)
Select the most appropriate teaching method in reference to the following descriptions.

Application	Teaching without sensing objects (i.e., Teaching the background).	Setting a threshold in the middle between the background and sensing object for operation.	Detection of glossy objects in front of the background.	Setting the maximum sensing distance of the Sensor.
\checkmark		\checkmark	\checkmark	
Teaching	Normal one-point teaching	Normal two-point teaching	Zone teaching	Maximum distance setting (in normal mode)
Setting method	Press the TEACH button with the background object.	Press the TEACH button with the background object.	Press the TEACH button with the background object (conveyor, etc.).	Press the TEACH button for longer than three seconds.
Set threshold	Threshold (a) is set to a distance in front of the background of 20% of the background distance.	Threshold (a) is set approximately in the middle between the background and sensing object.	Thresholds (a and b) are set in the sensing distance on condition that the difference between these thresholds is approximately 10% of the whole sensing distance.	The threshold is set in such manner that the stability indicator will turn ON at approximately 2 m if the sensing object is white paper.
Output ON range	The output is ON between the Sensor and La.	The output is ON between the Sensor and La.	The output is ON between La and Lb .	The output is ON whenever the sensing object is located between the Sensor and at a distance of 2.2 m .

La: Distance equivalent to threshold
(a)

Lb: Distance equivalent to threshold
(b)

Normal one-point teaching

Pro- ce- dure	Operation
1	Set the mode selector to TEACH .
2	Set the NORMAL/ZONE mode selector to NORMAL.
3	Press the TEACH button with the background. The teaching indicator (red) will turn ON.
4	Set the mode selector to RUN . (Set to L-ON or D-ON mode.)

Note: Perform normal one-point teaching with the background.
Normal two-point teaching

Pro- ce- dure	Operation
1	Set the mode selector to [TEACH .
2	Set the NORMAL/ZONE mode selector to [NORMAL.
3	Press the TEACH button with a sensing object. The teaching indicator (red) will turn ON.

Pro-- ce- dure	Operation
4	Move the sensing object and press the [TEACH button with the background. If the teaching is successful, the teaching indicator (green) will turn ON. If the teaching is not successful, the teaching indicator (red) will flash.
5	When the teaching is successful, the setting is complete. Set the mode selector to RUN . (Use the operation mode selector to set L-ON/D-ON.) When the teaching is not successful, change the work position and setting distance again, and restart the setting from step "3".

Zone teaching

Pro- ce- dure	Operation
1	Set the mode selector to TEACH. .
2	Set the NORMAL/ZONE mode selector to ZONE .
3	Press the TEACH button with the background. The teaching indicator (red) will turn ON and the teaching indicator (green) will then turn ON.
4	Set the mode selector to RUN . (Set to L-ON or D-ON mode.)

Note: Perform zone teaching with the background.

Maximum distance setting (in normal mode)
If you want to set the maximum distance of the sensor, set a maximum distance as depicted in the following procedure.

Pro- ce- dure	Operation
1	Set the mode selector to TEACH .
2	Set the NORMAL/ZONE mode selector to NORMAL .
3	Press the TEACH button 3 s or more. The teaching indicator (red) will turn ON. In 3 s, the teaching indicator (green) will turn ON.
4	When the teaching indicator (green) turns ON, the setting is complete. Set the mode selector to RUN . (Set to L-ON/ D-ON.)

Precautions

Correct Use E3G-R/MR Design Power Supply

E3G-L/ML

Design
Power Supply
A full-wave rectification power supply can be used with the E3G-ML79(T)-G.

Wiring Considerations

The tensile strength of the cable during operation should not exceed the values shown below.

Model	Tensile strength
E3G-L73	
E3G-ML79(T)-G	50 N max.
E3G-L77	10 N max.

Miscellaneous

EEPROM Write Error

If a write error occurs (operation indicator flickers) due to pow-er-off, static electricity or other noise in the teaching mode, perform teaching again.

E3G-M■(T)-G

Wiring Considerations

- The cable with an external diameter of 6 to 8 mm is recommended.
- Securely tighten the cover to maintain water resistance and dust resistance. The thread size of the conduit socket is PG 13.5
- Do not tighten with the cable caught by the terminal protection cover. Otherwise, the water-resistant structure and like cannot be maintained.

- Changing to Side-pullout Cable from Vertical-pullout Cable

Pro- ce- dure	Operation
(1)	Remove the present cover.
(2)	Attach the E39-L129-G Terminal Protection Cover for side-pullout cable.
(3)	Remove the clamping nut, washer, and rubber bushing of the E3G. These are used for the side-pullout cable.
(4)	Attach the rubber bushing and cap provided with the E39-L129-G to the E3G as replacements.

All E3G Models
 Design
 Load Relay Contact

If a load is used that will spark when it is turned OFF (e.g. a contactor or valve), the usually closed side may be turned ON before the usually open side is turned OFF or vice versa. If both usually open output and usually closed output are used simultaneously, apply an surge suppressor to the load. (Refer to OMRON's "Switch/Relay/Connector (PCB Product) Catalog" for typical examples of surge suppressors.

Wiring Considerations

Connection/Wiring

The E3G has load short-circuit protection. If load short-circuit or like has occurred, the output turns OFF. Therefore, recheck the wiring and switch power on again. This resets the shortcircuit protection circuit. Load short-circuit protection is activated when a current of 2 times or more of the rated load current flows. When using an L load, use the one the inrush current of which is less than 1.2 times of the rated load current.

Mounting

- If Sensors are mounted face-to-face, ensure that no optical axes cross each other. Otherwise, mutual interference may result.
- Be sure to install the Sensor carefully so that the directional angle range of the Sensor will not be directly exposed to intensive light, such as sunlight, fluorescent light, or incandescent light.
- Do not strike the Photoelectric Sensor with a hammer or any other tool during the installation of the Sensor, or the Sensor will loose its water-resistive properties.
- Use M4 screws for Sensor installation.
- For case installation, tighten it to the torque of 1.2 Nm max.

Water Resistance

Tighten the operation cover screws and terminal block cover screws to a torque of 0.3 to 0.5 Nm in order to ensure water resistivity.

Dimensions (Unit: mm)
Sensors
Retroreflective Models
Pre-wired

Distance-setting
Pre-wired
E3G-L73

Accessories (Order Separately)

Reflectors and Mounting Brackets
H-3

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.

To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Sensor Fixings \& Accessories category:
Click to view products by Omron manufacturer:

Other Similar products are found below :
F03-01 SUS304 BINIL 8000-5130 FH-AP1 PH-1-10M PH-1-20M PH-2-30M AC201 R4 ADI-LC3S EC18-WELL PC-15015 K35-4 A1923 SS-12143 STA12 AP4-T PH-1-50M R6 D01051301 $43912557-020$ MF-1 D=3.2 BGN-035 E39-L7 ZX-SB11 D01070602 606072 606075 Y92ES12PVC4A10ML Y92ES12PVC4S5ML SA9Z-F11 Z49-SF1 ZFV-XMF2 E4R-R12A-CS3M010 28810-2 ZX-SW11E V3 CCS-PL-LDR2-70 E4R-R12A-CS3M020 BS-1T CHITAN F03-01 CHITAN CCS-PD2-1012 ZX-SFW11E V3 PH-2-90M PH-2-5M XMLZL008 AC244 28810-1 PH-1-40M SS-12225 32043-500 $8 \underline{81532111}$

