Absolute Rotary Encoder

Use the Tough E6C2-A (Rated IP64

 for Degree of Protection) Combined with a PLC or Cam Positioner for Optimum Control and Ease-of-Use- Incorporates a sealed bearing, meeting IP64 for durability

■ Compact: 50-mm diameter x 38-mm height

■ 8 mm-dia. stainless steel shaft is twice as strong as conventional shafts

- Reliable bearing and metal slit plate ensure shock resistance of $1000 \mathrm{~m} / \mathrm{s}^{2}$
(ϵ

Ordering Information

ABSOLUTE ROTARY ENCODERS

Appearance	Connection method	Connecting device	Resolution (p/r)	Part number
	Cable	Programmable Controller	$256,360,720,1,024$	E6C2-AG5C 256 E6C2-AG5C 360 E6C2-AG5C 720 E6C2-AG5C 1024

Note: The H8PS can be connected to the E6C2-AG5C-C but not to the E6C2-AG5C.

ACCESSORIES (ORDER SEPARATELY)

Refer to Dimensions section for details

Item	Part number	
Coupling		E69-C08B
Flange	E69-FCA-03	
Extension cable	E69-FCA-04	
	10 m	E69-DF5
	15 m	E69-DF10
	20 m	E69-DF15

Specifications

RATINGS/CHARACTERISTICS

Power supply voltage		$12 \mathrm{VDC}^{-10 \%}$ to $24 \mathrm{VDC}^{+15 \%}$, ripple (p-p) 5\% max.
Current consumption		70 mA max.
Resolution (See Note 1)		256, 360, 720, 1,024 P/R
Output code (absolute)		Gray code
Output configuration		NPN open collector
Output capacity	Applied voltage	30 VDC max.
	$\mathrm{I}_{\text {sink }}$	35 mA max.
	Residual voltage	0.4 V max.
Max. response frequency (See Note 2)		20 kHz
Logic		Negative logic output (H=0, L=1)
Rotational direction		Clockwise, as viewed from the face of the shaft
Rise and fall times of output		$1 \mu \mathrm{~s}$ max. (cable length: $2 \mathrm{~m} ; \mathrm{I}_{\text {sink }}$: 35 mA max.)
Starting torque		$100 \mathrm{gf} \cdot \mathrm{cm}(0.087 \mathrm{in} \cdot \mathrm{lbf})$ max. at room temperature $150 \mathrm{gf} \cdot \mathrm{cm}(0.13 \mathrm{in} \cdot \mathrm{lbf})$ max. at low temperature
Moment of inertia		$15 \mathrm{~g} \cdot \mathrm{~cm}^{2}\left(1.5 \times 10^{-6} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$ or $0.005 \mathrm{lb} \cdot \mathrm{in}^{2}$ max.
Shaft loading	Radial	$8 \mathrm{kgf}(78.4 \mathrm{~N})$ or 17.6 lbf
	Thrust	$5 \mathrm{kgf}(49 \mathrm{~N})$ or 11.0 lbf
Maximum permissible rotation		5,000 rpm
Ambient temperature	Operating	$-10^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(14^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$ with no icing
	Storage	$-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $\left.185^{\circ} \mathrm{F}\right)$ with no icing
Ambient humidity	Operating	35% to 85\% (with no condensation)
Insulation resistance		$20 \mathrm{M} \Omega \mathrm{min}$. (at 100 VDC) between carry parts and case
Dielectric strength		500 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min between carry parts and case
Vibration resistance		Destruction: 10 to $500 \mathrm{~Hz}, 1.0-\mathrm{mm}$ single amplitude or $150 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 15G) for 11 min. 3 times each in X, Y, and Z axes
Shock resistance		Destruction: 1,000 m/s ${ }^{2}$ (approx. 100G) 3 times each in X, Y, and Z axes
Degree of protection		IEC IP64
Weight		$300 \mathrm{~g} \mathrm{(0.66} \mathrm{lbs)} \mathrm{with} \mathrm{2-m} \mathrm{cable}$

Note: 1. A gray code signal with a remainder of 76 is used for a resolution of 360 per rotation and a gray code signal with a remainder of 152 is used for a resolution of 720 per rotation. Therefore, the code signal for a resolution of 360 per rotation uses addresses 76 through 435 and that for a resolution of 720 per rotation uses addresses 152 through 871.
2. The electrical maximum response rotation is determined by using the resolution and maximum response frequency in the following formula.

$$
\text { Electrical maximum response rotation }(\mathrm{rpm})=\frac{\text { Maximum response frequency }}{\text { Resolution }} \times 60
$$

Therefore, a signal cannot follow electrically if the actual rotation exceeds the maximum response rotation.

Connections

DURABLE DESIGN

The E6C2-A incorporates a high-performance LED, custom-made diode array, high-density printed circuit board, and a compact, watertight, seal bearing that withstands heavy loads, thus ensuring high mechanical durability, watertight performance, and compactness. The O-ring applied to the casing and a watertight packing applied to the cable connector enhance the watertight performance of the E6C2-A.

SHAFT STRENGTH

The E6C2-A has a stainless steel shaft that is 8 mm in diameter and approximately twice as strong as OMRON's conventional Rotary Encoder shaft. The E6C2-A also has a reliable bearing and metal slit plate, ensuring a shock resistance of $1,000 \mathrm{~m} / \mathrm{s}^{2}$

Operation

\qquad

CONNECTIONS

Cable Specifications

Wire color	Output signal		
	E6C2-AG5C		9-bit (360)
	8-bit (256)	NC	2^{9}
Light blue	NC	2^{8}	2^{8}
Pink	NC	2^{5}	2^{5}
Purple	2^{5}	2^{1}	2^{1}
Orange	2^{1}	2^{0}	2^{0}
Brown	2^{0}	2^{7}	2^{7}
White	2^{7}	2^{4}	2^{4}
Blue	2^{4}	2^{2}	2^{2}
Yellow	2^{2}	2^{3}	2^{3}
Green	2^{3}	2^{6}	2^{6}
Gray	2^{6}		
---	Shield (GND)		
Red	12 to 24 VDC		
Black	0 V (Common)		

CONNECTOR SPECIFICATIONS

Pin number	Output signal
	E6C2-AG5C-C
	8-bit (256)
2	NC
3	NC
4	2^{5}
5	2^{1}
6	2^{0}
7	2^{7}
8	2^{4}
9	2^{2}
10	2^{3}
11	2^{6}
12	Shield (GND)
13	12 to 24 VDC
	0 V (Common)

OUTPUT CIRCUIT DIAGRAM

Note: Each output bit uses the same circuit.

OUTPUT MODE

Rotating direction: CW, as viewed from the face of the shaft.


```
21
2
```



```
ON
off
\(2^{8}\) ON
\({ }^{29}\) ON
``` \(\qquad\)
```

Address 01234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

```

\section*{Dimensions}

Unit: mm (inch)
E6C2-AG5C

E6C2-AG5C-C

Oil-proof PVC, shielded 12-conductor cable (7/0.18 dia.)

\section*{Installation}

■ CONNECTING E6C2-AG5C-C TO H8PS CAM POSITIONER

\begin{tabular}{|l|l|l|}
\hline Model & Mounting method & Output configuration \\
\hline H8PS-8B & Flush & NPN transistor output \\
\cline { 3 - 3 } & & PNP transistor output \\
\hline H8PS-8BP & & NPN transistor output \\
\hline \cline { 3 - 3 } H8PS-8BF & Surface/Track & PNP transistor output \\
\hline & & \\
\hline
\end{tabular}

Specifications
\begin{tabular}{|c|c|}
\hline Rated voltage & 24 VDC \\
\hline Cam resolution & \(1.4^{\circ}\) (a resolution of 256 per rotation) \\
\hline Outputs & \begin{tabular}{l}
Open-collector transistor output \\
NPN: H8PS-8B(F) \\
PNP: H8PS-8B(F)P \\
Cam outputs: 8 lines (Output No. 1 to 8) 30 VDC max., 100 mA max. (residual voltage: 2 V max.) \\
RUN OUT: Turns ON in Run and Test modes, OFF in Program mode in case of error 30 VDC max., 100 mA max. (residual voltage: 2 V max.) \\
TACHOMETER: 60-ppr signal output for rpm meter \\
30 VDC max., 30 mA max. (residual voltage: 0.5 V max. for NPN models, 2 V max. for PNP models)
\end{tabular} \\
\hline Encoder response & 330 rpm \\
\hline Functions & \begin{tabular}{l}
Origin compensation (zero shift) \\
Rotating direction selection \\
Angle display selection \\
Teaching
\end{tabular} \\
\hline
\end{tabular}

\section*{CONNECTING E6C2-AG5C TO PROGRAMMABLE CONTROLLER}

\section*{Example of Connection to CQM1-CPU44-E High-capacity CPU Unit with Absolute Interface and RS-232C Port}

Position data can be directly input as 8, 10, or 12-bit gray code signals from Absolute Encoders to the CQM1-CPU44-E. The position data input is backed up during power failures. Therefore, the origin return operation is not required after the power supply resumes. Furthermore, the origin compensation function of the E6C2-AG5C makes it possible to use any position for the origin.

Input Specifications
\begin{tabular}{|l|l|}
\hline Input voltage & \(24 \mathrm{VDC}^{+10 \%} /-15 \%\) \\
\hline Input impedance & \(5.4 \mathrm{k} \Omega\) \\
\hline Input current & 4 mA (TYP.) \\
\hline ON voltage & 16.8 VDC min. \\
\hline OFF voltage & 3.0 VDC max. \\
\hline Counting speed & 4 kHz max. \\
\hline Input code & Gray code (8, 10, or 12 bits) \\
\hline
\end{tabular}

E69-DC5 5M Connection Cable for CQM1-CPU44-E (Order Separately)

Note: 1. 6-dia. oil-proof PVC, shielded 12-conductor cable (7/0.18 dia.); standard length: 5 m
2. Connected to CQM1-CPU44-E.
3. 12 to 24 VDC
4. Connected to Encoder.

\section*{System Configuration Using a Resolution of 1,024 per Rotation}

A combination of the CQM1-CPU4-4E and E6C2-AG5C ensures easy output angle setting for cam control in \(360^{\circ}\) or BCD mode.

Mode Setting of CQM1-CPU44-E
Set port 1 to BCD mode and 10 bits
DM \(6643 \quad 0001\)

\section*{Output Timing}

\section*{Ladder Program Example}

Use the CTBL instruction of the CQM1-CPU44-E to register a maximum of eight comparison tables for output angle setting.

Example of DM Setting for Comparison Table
\(\begin{array}{r|c|c}\text { DM0000 } & \text { Lower limit 1 } \\\)\cline { 2 - 2 } & 0001 & 0000 \\ & \text { Upper limit } 1 \\ 0002 & 0512 & \text { Subroutine number 1 }\end{array}\(]\) Bit AR 0500

Note: An upper or lower limit can be set with integers in BCD mode and \(5^{\circ}\) increments in \(360^{\circ}\) mode. Subroutine numbers are set for interrupt processing.

\section*{Internal Bits of CQM1-CPU44-E}
- Range Comparison Result

Each bit of the CQM1-CPU44-E CPU Unit's words AR 05 and AR 06 turns ON only when the comparison range coincides with the angle of E6C2-AG5C.

- Present Value Read

The gray code signals of the E6C2-AG5C are automatically converted into BCD or \(360^{\circ}\) code signals and read through the CQM1-CPU44-E CPU Unit's words AR 232 and AR 234. The present value can be used for ladder programs.
\begin{tabular}{|c|c|c|}
\hline Port 1 angle & & Word 232 \\
\hline Port 2 angle & **** & Word 234 \\
\hline
\end{tabular}

\section*{CONNECTING TO CPM1A USING A RESOLUTION OF 720 PER ROTATION}

Wiring Between E6C2-AG5C and CPM1A
\begin{tabular}{|l|l|}
\hline Output signal from E6C2-AG5C & Input signal to CPM1A \\
\hline Brown \(\left(2^{0}\right)\) & 00000 \\
\hline Orange \(\left(2^{1}\right)\) & 00001 \\
\hline Yellow \(\left(2^{2}\right)\) & 00002 \\
\hline Green \(\left(2^{3}\right)\) & 00003 \\
\hline Blue \(\left(2^{4}\right)\) & 00004 \\
\hline Purple \(\left(2^{5}\right)\) & 00005 \\
\hline Gray \(\left(2^{6}\right)\) & 00006 \\
\hline White \(\left(2^{7}\right)\) & 00007 \\
\hline Pink \(\left(2^{8}\right)\) & 00008 \\
\hline Light blue \(\left(2^{9}\right)\) & 00009 \\
\hline
\end{tabular}

\section*{Output Timing}

\section*{Ladder Program}

Converts a gray code signal into a BIN code signal (word 200).

\section*{Example of DM Setting for Comparison Table}
\(\left.\begin{array}{r|r|r}\text { DM6200 } & 0000 & \text { Lower limit 1 } \\ & 0201 & 0540 \\ 6202 & \text { Upper limit 1 }\end{array}\right]\) Bit 20300

\section*{GRAY-TO-BINARY CONVERSION CIRCUIT REFERENCE}

Note: This circuit example is for 10 -bit signals. For 9 -bit signals, input Vin into the XOR of \(2^{8}\), and for 8 -bit signals, input Vin into the XOR of \(2^{7}\).

Note: 1. Signal can be converted into positive-logic binary code signals if 0 V is connected to Vin.
2. Inverter
3. Exclusive OR (EOR)

\section*{X-ON Electronics}

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Encoders category:
Click to view products by Omron manufacturer:
Other Similar products are found below :
6-1393048-0 6-1393048-5 62AG22-H5-P 62B22-LP-030C 63K25 63K32 63KS100 63KS64 63R100 63R50-020 63RS256-060 700-09-36 RE12D300-201-1 1393047-3 2-1393047-2 T101-5C2-111-M1 T101-5C3-111-M1 T101-5C4-111-M1 385001M0439 385001M0216 V23401H1409B101 V23401T8002B802 V23401U6019B609 E69-1 E69DF10 E69-FCA 62B11-LP-100S 62N11-P 62S22-H9-120S 62S30-L0-200C 62V15-02-080S 63K64 63KS100-040 63R64-050 63RS64 700-16-16 V23401D3002B301 3-1393048-1 63KS128 63KS256 1-1879391-5 GH65C11-N-SO 62S15-M0-P 63R64 1393047-1 E69-FCA02 E69-FCA04 E69-DF20 E69-DF2 63R50```

