OmROח

Photomicrosensor (Transmissive) EE-SX3160-W11/4160-W11

Be sure to read Precautions on page 24.

- Dimensions

Note: All units are in millimeters unless otherwise indicated.

Features

- Wide model with a $9.5-\mathrm{mm}$-wide slot.
- Light-receiving element and amplification circuits contained in one chip.
- Can use a power supply voltage of 4.5 to 16 V .
- Connects directly to C-MOS or TTL.
- Dark-ON Sensor: EE-SX3160-W11
- Light-ON Sensor: EE-SX4160-W11
- Pre-wired Sensors (AWG28).
- Solder-less lead wire connection to increase reliability.
\square Absolute Maximum Ratings ($\mathbf{T a}=25^{\circ} \mathrm{C}$)

Item		Symbol	Rated value
Emitter	Forward current	I_{F}	50 mA (see note 1)
	Reverse voltage	V_{R}	4 V
	Power supply volt- age	V_{CC}	16 V
	Output voltage	$\mathrm{V}_{\mathrm{OUT}}$	28 V
	Output current	$\mathrm{I}_{\text {OUT }}$	16 mA
	Permissible output dissipation	$\mathrm{P}_{\text {OUT }}$	250 mW (see note 1$)$
Ambient tem- perature	Operating	Topr	$-25^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$
	Storage	Tstg	$-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds $25^{\circ} \mathrm{C}$.
2. If you mount the Sensor with screws, use M3 screws, and flat washers and use a tightening torque of $0.5 \mathrm{~N} \cdot \mathrm{~m}$ max.

Electrical and Optical Characteristics ($\mathbf{T a}=25^{\circ} \mathrm{C}$)

Item		Symbol	Value	Condition
Emitter	Forward voltage	V_{F}	1.2 V typ., 1.5 V max.	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
	Reverse current	I_{R}	$0.01 \mu \mathrm{~A}$ typ., $10 \mu \mathrm{~A}$ max.	$\mathrm{V}_{\mathrm{R}}=4 \mathrm{~V}$
	Peak emission wavelength	λ_{P}	920 nm	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
Detector	Low-level output voltage	V_{OL}	0.12 V typ., 0.4 V max.	$\mathrm{V}_{\mathrm{CC}}=4.5$ to $16 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$ (EE-SX3160), $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}(E E-S X 4160)$
	High-level output voltage	V_{OH}	15 V min.	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=16 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}(E E-S X 3160), \\ & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}(E E-S X 4160) \end{aligned}$
	Current consumption	I_{Cc}	3.2 mA typ., 10 mA max.	$\mathrm{V}_{C C}=16 \mathrm{~V}$
	Peak spectral sensitivity wavelength	λ_{P}	870 nm	$\mathrm{V}_{\mathrm{CC}}=4.5$ to 16 V
LED current when output is OFF		I_{FT}	2 mA typ., 10 mA max.	$\mathrm{V}_{\mathrm{CC}}=4.5$ to 16 V
LED current when output is ON				
Hysteresis		$\Delta \mathrm{H}$	15\% typ.	$\mathrm{V}_{\mathrm{CC}}=4.5$ to 16 V (see note 1)
Response frequency		f	3 kHz min.	$\mathrm{V}_{\mathrm{CC}}=4.5$ to $16 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=15 \mathrm{~mA}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$ (see note 2)
Response delay time		$\mathrm{t}_{\text {PLH }}\left(\mathrm{t}_{\text {PHL }}\right)$	$3 \mu \mathrm{styp}$.	$\mathrm{V}_{\mathrm{CC}}=4.5$ to $16 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=15 \mathrm{~mA}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$ (see note 3)
Response delay time		$\mathrm{t}_{\text {PHL }}\left(\mathrm{t}_{\text {PLH }}\right)$	$20 \mu \mathrm{~s}$ typ.	$\mathrm{V}_{\mathrm{CC}}=4.5$ to $16 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=15 \mathrm{~mA}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$ (see note 3)

Note: 1. Hysteresis denotes the difference in forward LED current value, expressed in percentage, calculated from the respective forward LED currents when the photo IC in turned from ON to OFF and when the photo IC in turned from OFF to ON.
2. The value of the response frequency is measured by rotating the disk as shown below.

3. The following illustrations show the definition of response delay time. The value in the parentheses applies to the EE-SX4160.

EE-SX3160

EE-SX4160

Engineering Data

Note: The values in the parentheses apply to the EE-SX4160.

Forward Current vs. Collector

 Dissipation Temperature Rating

LED Current vs. Ambient Temperature Characteristics (Typical)

Current Consumption vs. Supply Voltage (Typical)

Forward Current vs. Forward Voltage Characteristics (Typical)

Low-level Output Voltage vs. Output Current (Typical)

Response Delay Time vs. Forward Current (Typical)

LED Current vs. Supply Voltage (Typical)

Low-level Output Voltage vs.
Ambient Temperature Characteristics (Typical)

Repeat Sensing Position Characteristics (Typical)

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Optical Switches, Transmissive, Photo IC Output category:
Click to view products by Omron manufacturer:

Other Similar products are found below :
EESX4009P1MID1 EE-SMR3-1T GP1A51HRJ00F HOA6991-500 EE-SX460-P1 OPB960N11 OPB120B OPB121B HOA0961-N51 HOA0963-T51 HOA0973-N51 HOA0973-T51 HOA2006-001 HOA2007-001 HOA6961-T51 HOA6971-N51 HOA6971-T55 HOA6972-

T51 HOA6981-L55 HOA6981-T51 HOA6982-T51 HOA6990-L51 HOA6991-L51 HOA6991-T51 HOA6991-T55 HOA6992-L51
HOA6992-N55 EE-SA407-P2 EE-SPX303-N EE-SX3009-P1 EE-SX301 EE-SX305 EE-SX3070 EE-SX3081 EE-SX3088-W11 EE-
SX3096-W11 EE-SX3160-W11 EE-SX3161-W11 EE-SX3162-P1 EE-SX3162-P1-Z EE-SX3162-P2 EE-SX3163-P1 EE-SX3163-P2 EE-

SX3164-P1 EE-SX3164-P2 EE-SX3239-P2 EE-SX384 EE-SX398 EE-SX4009-P1 EE-SX4009-P10

