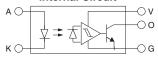

Photomicrosensor (Reflective) EE-SY310/-SY410


Be sure to read Precautions on page 24.

Dimensions

Note: All units are in millimeters unless otherwise indicated.

Internal Circuit

Terminal No.	Name
Α	Anode
K	Cathode
V	Power supply (Vcc)
0	Output (OUT)
G	Ground (GND)

Unless otherwise specified, the tolerances are as shown below.

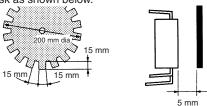
Dimensions	Tolerance
3 mm max.	±0.2
3 < mm ≤ 6	±0.24
6 < mm ≤ 10	±0.29
10 < mm ≤ 18	±0.35
18 < mm ≤ 30	±0.42

■ Features

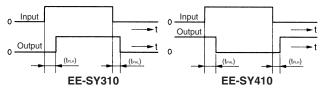
- Incorporates an IC chip with a built-in detector element and amplifier
- Incorporates a detector element with a built-in temperature compensation circuit.
- Compact reflective model with a molded housing.
- A wide supply voltage range: 4.5 to 16 VDC
- Directly connects with C-MOS and TTL.
- Dark ON model (EE-SY310)
- Light ON model (EE-SY410)
- Recommended sensing distance = 5.0 mm

■ Absolute Maximum Ratings (Ta = 25°C)

Ite	Symbol	Rated value	
Emitter	Forward current	I _F	50 mA (see note 1)
	Reverse voltage	V_R	4 V
	Pulse forward current	I _{FP}	1 A (see note 2)
Detector	Power supply voltage	V _{cc}	16 V
	Output voltage	V_{OUT}	28 V
	Output current	I _{OUT}	16 mA
	Permissible output dissipation	P _{OUT}	250 mW (see note 1)
Ambient tempera-	Operating	Topr	–40°C to 75°C
ture	Storage	Tstg	–40°C to 85°C
Soldering temperature		Tsol	260°C (see note 3)

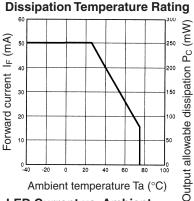

- **Note: 1.** Refer to the temperature rating chart if the ambient temperature exceeds 25°C.
 - 2. The pulse width is 10 μs maximum with a frequency of 100 Hz.
 - 3. Complete soldering within 10 seconds.

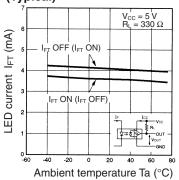
■ Electrical and Optical Characteristics (Ta = 25°C)


Item		Symbol Value		Condition	
Emitter	Forward voltage	V_{F}	1.2 V typ., 1.5 V max.	I _F = 20 mA	
	Reverse current	I _R	0.01 μA typ., 10 μA max.	V _R = 4 V	
	Peak emission wavelength	λ_{P}	920 nm typ.	I _F = 20 mA	
High-le	Low-level output voltage	V _{OL}	0.12 V typ., 0.4 V max.	Vcc = 4.5 to 16 V, I _{OL} = 16 mA, without incident light (EE-SY310), with incident lig (EE-SY410) (see notes 1 and 2)	
	High-level output voltage	V _{OH}	15 V min.	Vcc = 16 V, $R_L = 1 \text{ k}\Omega$, with incident light (EE-SY310), without incident light (EE-SY410) (see notes 1 and 2)	
	Current consumption	I _{cc}	3.2 mA typ., 10 mA max.	Vcc = 16 V	
	Peak spectral sensitivity wavelength	λ_{P}	870 nm typ.	V _{CC} = 4.5 to 16 V	
LED curre	ent when output is OFF	I _{FT}	6 mA typ., 15 mA max.	V _{CC} = 4.5 to 16 V	
LED curre	ent when output is ON				
Hysteresis	s	ΔΗ	17% typ.	V _{CC} = 4.5 to 16 V	
Response	frequency	f	50 Hz min.	$V_{CC} = 4.5 \text{ to } 16 \text{ V}, I_F = 15 \text{ mA}, I_{OL} = 16 \text{ mA}$	
Response	e delay time	t _{PLH} (t _{PHL})	3 μs typ.	$V_{CC} = 4.5 \text{ to } 16 \text{ V}, I_F = 15 \text{ mA}, I_{OL} = 16 \text{ mA}$	
Response	e delay time	t _{PHL} (t _{PLH})	20 μs typ.	$V_{CC} = 4.5 \text{ to } 16 \text{ V}, I_F = 15 \text{ mA}, I_{OL} = 16 \text{ mA}$	

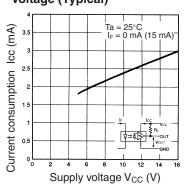
Note: 1. With incident light" denotes the condition whereby the light reflected by white paper with a reflection factor of 90% at a sensing distance of 5 mm is received by the photo IC when the forward current (I_F) of the LED is 20 mA.

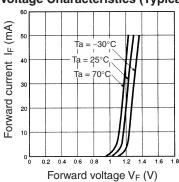
- 2. Sensing object: White paper with a reflection factor of 90% at a sensing distance of 5 mm.
- 3. Hysteresis denotes the difference in forward LED current value, expressed in percentage, calculated from the respective forward LED currents when the photo IC is turned from ON to OFF and when the photo IC is turned from OFF to ON.
- The value of the response frequency is measured by rotating the disk as shown below.

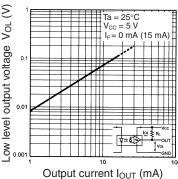

The following illustrations show the definition of response delay time. The value in the parentheses applies to the EE-SY410.

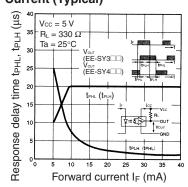

■ Engineering Data

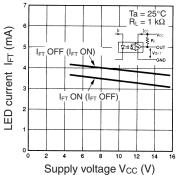
Note: The values in the parentheses apply to the EE-SY410.

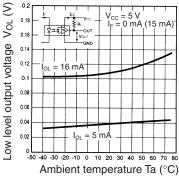

Forward Current vs. Collector

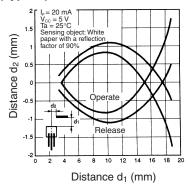

LED Current vs. Ambient Temperature Characteristics (Typical)


Current Consumption vs. Supply Voltage (Typical)


Forward Current vs. Forward Voltage Characteristics (Typical)


Low-level Output Voltage vs. Output Current (Typical)


Response Delay Time vs. Forward Current (Typical)


LED Current vs. Supply Voltage (Typical)

Low-level Output Voltage vs. Ambient Temperature Characteristics (Typical)

Sensing Position Characteristics (Typical)

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Optical Switches, Reflective, Photo IC Output category:

Click to view products by Omron manufacturer:

Other Similar products are found below:

GP2A230LRS0F GP2A230LRSAF GP2A240LCS0F ML6-H4K12GVA EE-SPY415 EE-SG3M EE-SPY801 EE-SPY802 EE-SY310 EE-SY410 EE-SY413 GP2A200LCS0F GP2A2500CSCF GP2A25J0000F TLLAG-72APG-R1KH1-V-A TLLAG-72BB-R1KH2-V-A TLLAG-72BG-R1KH1-V-A TLLAG-72BPG-R1SH1-V-A OPB716Z OPB718Z OPB720A-06Z OPB720A-12Z OPB720B-06Z OPB760N XB2-BW31B1C (ZB2BWB11C+ZB2BW31C) XB2-BW33B1C (ZB2BWB31C+ZB2BW33C) AEDR-83001P2 AEDR-8400-130 C3012-TW-B-V C3012-TW-R-V ML6-H4KA2VA ECS-22RL1G-0020-L24G ECS-22RL1R-0020-L24R ECS-22RP1G-1000 ECS-22RP1G-1020-L24G ECS-22RP1R-1000 ECS-22RP1Y-1000 ECS-22RP2G-1010 ECS-22RP2G-1030-L24G ECS-22RP2R-1010 ECS-22RP2R-1030-L24R ECS-22RP2R-1010 ECS-22RP3G-1000 ECS-22RP3R-1000 ECS-