PCB Power Relay

The Best Seller G2R

-1General purpose power Relays of single-pole10 A and double-pole 5 A.

- Safety-oriented design with dielectric strength of $5,000 \mathrm{~V}$ between coil and contacts, and surge resistance of $10,000 \mathrm{~V}$.
- AC and DC types are both available for operational coils.

RoHS Compliant

Model Number Legend

G2R- $\square-\square \square \square \square-\square \frac{\square}{1} \frac{\square}{4} \frac{\square}{6}$

1. Relay Function

None: Single-side stable
K : Double-winding latching
2. Number of poles

1: 1-pole
2: 2-pole
3. Contact Form

None: NO/NC
4. Contact Type

None: Single
Z : Bifurcated contact

5. Enclosure rating

None: Flux protection

$$
\begin{aligned}
& \text { (T-type is an enclosed } \\
& \text { relay) } \\
& 4 \text { : Fully sealed }
\end{aligned}
$$

6. Terminal Shape

None: PCB terminals
T : Quick-connect (upper bracket mounting \#187)
7. Classification

None: Standard
E : High-capacity
H : High-sensitivity
U : For ultrasonically cleanable

Z : Full-wave rectifier

A : NO

Model Configuration

Terminal Shape	Classification	Number of poles		1-pole		2-pole		Minimum packing unit
		Enclosure rating	Contact form	SPST-NO (1a)	SPDT (1c)	DPST-NO (2a)	DPDT (2c)	
PCB terminals	Standard	Flux protection	AC	G2R-1A	G2R-1	G2R-2A	G2R-2	$\begin{gathered} 100 \\ \text { pcs/tray } \end{gathered}$
			DC					
		Fully sealed	AC	G2R-1A4	G2R-14	G2R-2A4	G2R-24	
			DC					
	Bifurcated contact	Flux protection	DC	G2R-1AZ	G2R-1Z	-	-	50 pcs/tray
		Fully sealed		G2R-1AZ4	G2R-1Z4	-	-	
	High-capacity	Flux protection	AC	G2R-1A-E	G2R-1-E	-	-	$\begin{gathered} 100 \\ \text { pcs/tray } \end{gathered}$
			DC					
	High-sensitivity	Flux protection	DC	G2R-1A-H	G2R-1-H	G2R-2A-H	G2R-2-H	
	Double-winding latching	Flux protection	DC	G2RK-1A	G2RK-1	G2RK-2A	G2RK-2	$\begin{gathered} 50 \\ \text { pcs/tray } \end{gathered}$
Quick-connect	Standard	Unsealed	AC	G2R-1A-T	G2R-1-T	-	-	$\begin{gathered} 100 \\ \text { pcs/tray } \end{gathered}$
			DC					

[^0]2. Sockets for PCB terminal models are not provided.

-Ordering Information

- PCB Terminal Models

Classification	Enclosure rating	Number of poles Contact form	1-pole		2-pole	
			Model	Rated coil voltage	Model	Rated coil voltage
Standard	Flux protection	NO	G2R-1A	12, 24, 100/(110) VAC	G2R-2A	12, 24, 100/(110) VAC
				200/(220) VAC		200/(220) VAC
				5, 6, 12, 24, 48 VDC		5, 6, 12, 24, 48 VDC
				100 VDC		100 VDC
		NO/NC	G2R-1	12, 24, 100/(110) VAC	G2R-2	12, 24, 100/(110) VAC
				200/(220) VAC		200/(220) VAC
				5, 6, 12, 24, 48 VDC		5, 6, 12, 24, 48 VDC
				100 VDC		100 VDC
	Fully sealed	NO	G2R-1A4	12, 24, 100/(110) VAC	G2R-2A4	12, 24, 100/(110) VAC
				200/(220) VAC		200/(220) VAC
				5, 6, 12, 24, 48 VDC		5, 6, 12, 24, 48 VDC
				100 VDC		100 VDC
		NO/NC	G2R-14	12, 24, 100/(110) VAC	G2R-24	12, 24, 100/(110) VAC
				200/(220) VAC		200/(220) VAC
				5, 6, 12, 24, 48 VDC		5, 6, 12, 24, 48 VDC
				100 VDC		100 VDC
High-sensitivity	Flux protection	NO	G2R-1A-H	5, 6, 12, 24, 48 VDC	G2R-2A-H	5, 6, 12, 24, 48 VDC
		NO/NC	G2R-1-H	5, 6, 12, 24, 48 VDC	G2R-2-H	5, 6, 12, 24, 48 VDC
Double-winding latching		NO	G2RK-1A	5, 6, 12, 24 VDC	G2RK-2A	5, 12, 24 VDC
		NO/NC	G2RK-1	5, 6, 12, 24 VDC	G2RK-2	5, 6, 12, 24 VDC
Bifurcated contact	Flux protection	NO	G2R-1AZ	12, 24, 48 VDC	-	
				100 VDC		
		NO/NC	G2R-1Z	5, 6, 12, 24, 48 VDC		
				100 VDC		
	Fully sealed	NO	G2R-1AZ4	5, 12, 24, 48 VDC	-	
				100 VDC		
		NO/NC	G2R-1Z4	5, 12, 24, 48 VDC		
				100 VDC		
High-capacity	Flux protection	NO	G2R-1A-E	12, 24, 100/(110) VAC	-	
				200/(220) VAC		
				5, 6, 12, 24, 48 VDC		
				100 VDC		
		NO/NC	G2R-1-E	12, 24, 100/(110) VAC	-	
				200/(220) VAC		
				5, 6, 12, 24, 48 VDC		
				100 VDC		

Note: When ordering, add the rated coil voltage to the model number.
Example: G2R-1A AC12
L Rated coil voltage
However, the notation of the coil voltage on the product case as well as on the packing will be marked as $\square \square$ VAC

- Quick-connect Terminal (\#187)

Classification	Enclosure rating	Number of poles Contact form	1-pole	
			Model	Rated coil voltage
Standard	Unsealed	NO	G2R-1A-T	12, 24, 100/(110) VAC
				200/(220) VAC
				5, 6, 12, 24, 48 VDC
				100 VDC
				12, 24, 100/(110) VAC
		NO/NC	G2R-1-T	200/(220) VAC
		NONO	G2R-1-T	5, 6, 12, 24, 48 VDC
				100 VDC

- Full-wave Rectifier

Classification			Number of poles Contact form	1-pole		2-pole		
	Enclosure rating			Model	Rated coil voltage	Model	Rated coil voltage	
Standard	Flux protection	NO		G2R-1A-Z	5, 12, 24 VDC	G2R-2A-Z	5, 6, 12, 24, 48 VDC	
				100 VDC	100 VDC			
		NO/NC			G2R-1-Z	5, 12, 24, 48 VDC	G2R-2-Z	12, 24, 48 VDC
				100 VDC		100 VDC		
	Fully sealed	NO		G2R-1A4-Z	5, 12, 48 VDC	G2R-2A4-Z	24, 48 VDC	
					100 VDC		100 VDC	
		NO/NC		G2R-14-Z	5, 12, 24, 48 VDC	G2R-24-Z	5, 12, 24 VDC	
					100 VDC		100 VDC	
High-capacity	Flux protection	NO		G2R-1A-EZ	5, 12, 24 VDC	-		
					100 VDC			
		NO/NC		G2R-1-EZ	12, 24, 48 VDC			

- For Ultrasonically Cleanable

Note: When ordering, add the rated coil voltage to the model number.
Example: G2R-1A-T AC12
\square Rated coil voltage
However, the notation of the coil voltage on the product case as well as on the packing will be marked as $\square \square$ VAC.

■Ratings

- Coil

Classification	ItemRated voltage	Rated current (mA)		Coil resistance (Ω)	Must operate voltage (V)	Must release voltage (V)	Max. voltage (V)	Power consumption (VA, W)
		50 Hz	60 Hz		\% of rated voltage			
- Standard - Quick-connect - Fully sealed - High-capacity	12 VAC	93	75	65	80\% max.	30\% min.	$\begin{gathered} 140 \% \\ \left(\text { at } 23^{\circ} \mathrm{C}\right. \text {) } \end{gathered}$	$\begin{aligned} & \text { Approx. } 0.9 \\ & (60 \mathrm{~Hz}) \end{aligned}$
	24 VAC	46.5	37.5	260				
	100/(110) VAC	11	9/(10.6)	4,600				
	200/(220) VAC	5.5	4.5/(5.3)	20,200				
- Standard - High-capacity - Bifurcated contact - Quick-connect - Fully sealed	5 VDC	106		47	70\% max.	15\% min.	$\begin{gathered} 170 \% \\ \left(\text { at } 23^{\circ} \mathrm{C}\right. \text {) } \end{gathered}$	Approx. 0.53
	6 VDC	88.2		68				
	12 VDC	43.6		275				
	24 VDC	21.8		1,100				
	48 VDC	11.5		4,170				
	100 VDC	5.3		18,870				
- High-sensitivity	5 VDC	71.4		70	70\% max.	15\% min.	$\begin{gathered} 170 \% \\ \left(\text { at } 23^{\circ} \mathrm{C}\right. \text {) } \end{gathered}$	Approx. 0.36
	6 VDC	60		100				
	12 VDC			400				
	24 VDC			1,600				
	48 VDC		. 5	6,400				

Note 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $+15 \% /-20 \%$ (AC rated current) or $\pm 10 \%$ (DC coil resistance).
2. AC coil resistances shown above are only reference values.
3. The operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$.
4. The "Max. voltage" is the maximum voltage that can be applied to the relay coil.

- Coil: Double-winding Latching Relays

Rated voltage	Set Coil		Reset coil		Must set voltage (V)	Must reset voltage (V)	Max. voltage (V)	Power consumption	
	Rated current (mA)	Coil resistance (Ω)	Rated current (mA)	Coil resistance (Ω)	\% of rated voltage			Set Coil (mW)	$\begin{aligned} & \text { Reset coil } \\ & (\mathrm{mW}) \end{aligned}$
5 VDC	167	30	119	42	70\% max.	70\% max.	$\begin{gathered} 140 \% \\ \left(\text { at } 23^{\circ} \mathrm{C}\right. \text {) } \end{gathered}$	Approx. 850	Approx. 600
6 VDC	138	43.5	100	60					
12 VDC	70.6	170	50	240					
24 VDC	34.6	694	25	960					

Note 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$.
2. The operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$.
3. The "Max. voltage" is the maximum voltage that can be applied to the relay coil.

- Contacts: Flux Protection Type

Classification Number of poles Item	Standard type Quick-connect Terminal (1single-pole type)				High-capacity type		Bifurcated contact type		High-sensitivity type			
	1-pole		2-pole		1-pole		2-pole		1-pole		2-pole	
	Resistive load	```Inductive load (cos\phi=0.4; L/R = 7 ms)```	Resistive load	Inductive load $(\cos \phi=0.4 ;$ $L / R=7 \mathrm{~ms})$	Resistive load	$\begin{array}{\|c\|} \hline \text { Inductive } \\ \text { load } \\ (\cos \phi=0.4 ; \\ L / R=7 \mathrm{~ms}) \\ \hline \end{array}$	Resistive load	$\begin{array}{\|c\|} \hline \text { Inductive } \\ \text { load } \\ (\cos \phi=0.4 ; \\ L / R=7 \mathrm{~ms}) \\ \hline \end{array}$	Resistive load	$\begin{array}{\|c\|} \hline \text { Inductive } \\ \text { load } \\ (\cos \phi=0.4 ; \\ L / R=7 \mathrm{~ms}) \\ \hline \end{array}$	Resistive load	```Inductive load (cos }=0.4 L/R = 7 ms)```
Contact type	Single				Single		Bifurcated		Single			
Contact material	Ag-alloy (Cd free)											
Rated load	$\begin{aligned} & 10 \mathrm{~A} \text { at } \\ & 250 \mathrm{VAC} \\ & 10 \mathrm{~A} \text { at } 30 \\ & \text { VDC } \end{aligned}$	7.5 A at 250 VAC 5 A at 30 VDC	$\begin{array}{\|l} \hline 5 \mathrm{~A} \text { at } 250 \\ \text { VAC } \\ 5 \mathrm{~A} \text { at } 30 \\ \text { VDC } \end{array}$	$\begin{aligned} & 2 \mathrm{~A} \text { at } 250 \\ & \text { VAC } \\ & 3 \mathrm{~A} \text { at } 30 \\ & \text { VDC } \end{aligned}$	$\begin{aligned} & 16 \mathrm{~A} \text { at } \\ & 250 \text { VAC } \\ & 16 \mathrm{~A} \text { at } 30 \\ & \text { VDC } \end{aligned}$	```8A at 250 VAC 8A at 30 VDC```	$\begin{aligned} & 5 \mathrm{~A} \text { at } 250 \\ & \text { VAC } \\ & 5 \mathrm{~A} \text { at } 30 \\ & \text { VDC } \end{aligned}$	$\begin{aligned} & 2 A \text { at } 250 \\ & \text { VAC } \\ & 3 A \text { at } 30 \\ & \text { VDC } \end{aligned}$	```5A at 250 VAC 5A at 30 VDC```	$\begin{aligned} & 2 \mathrm{~A} \text { at } 250 \\ & \text { VAC } \\ & 3 \mathrm{~A} \text { at } 30 \\ & \text { VDC } \end{aligned}$	$\begin{aligned} & 3 \text { A at } 250 \\ & \text { VAC } \\ & 3 \text { A at } 30 \\ & \text { VDC } \end{aligned}$	$\begin{aligned} & 1 \mathrm{~A} \text { at } 250 \\ & \mathrm{VAC} \\ & 1.5 \mathrm{~A} \text { at } \\ & 30 \mathrm{VDC} \end{aligned}$
Rated carry current	10 A		5 A		16 A		5 A		5 A		3 A	
Max. switching voltage	380 VAC, 125 VDC				380 VAC, 125 VDC				380 VAC, 125 VDC			
Max. switching current	10 A		5 A		16 A		5 A		5 A		3 A	
Failure rate (P level) (reference value) *	100 mA at 5 VDC		10 mA at 5 VDC		100 mA at 5 VDC		1 mA at 5 VDC		100 mA at 5 VDC		10 mA at 5 VDC	

* This value was measured at a switching frequency of 120 operations/min.

- Contacts: Fully Sealed Type

Classification Number of poles Load	Standard type (Single contact type)				Bifurcated contact type	
	1-pole		2-pole			
	Resistive load $(\cos \phi=1)$	Inductive load $(\cos \phi=0.4 ; \mathrm{L} / \mathrm{R}=7 \mathrm{~ms})$	Resistive load $(\cos \phi=1)$	Inductive load $(\cos \phi=0.4 ; \mathrm{L} / \mathrm{R}=7 \mathrm{~ms})$	Resistive load $(\cos \phi=1)$	Inductive load $(\cos \phi=0.4 ; \mathrm{L} / \mathrm{R}=7 \mathrm{~ms})$
	Single		Single		Bifurcated	
Contact material	Ag-alloy (Cd free)					
Rated load	$\begin{aligned} & 8 \mathrm{~A} \text { at } 250 \mathrm{VAC} \\ & 8 \mathrm{~A} \text { at } 30 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & 6 \mathrm{~A} \text { at } 250 \mathrm{VAC} \\ & 4 \mathrm{~A} \text { at } 30 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & 4 \mathrm{~A} \text { at } 250 \mathrm{VAC} \\ & 4 \mathrm{~A} \text { at } 30 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{~A} \text { at } 250 \mathrm{VAC} \\ & 2.5 \mathrm{~A} \text { at } 30 \mathrm{VDC} \end{aligned}$	5 A at 250 VAC 5 A at 30 VDC	2 A at 250 VAC 3 A at 30 VDC
Rated carry current	8 A		4 A		5 A	
Max. switching voltage	380 VAC, 125 VDC		380 VAC, 125 VDC		380 VAC, 125 VDC	
Max. switching current	8 A		4 A		5 A	
Failure rate (P level) (reference value) *	100 mA at 5 VDC		10 mA at 5 VDC		1 mA at 5 VDC	

* This value was measured at a switching frequency of 120 operations/min.
- Contacts: Latching Type

Number of poles Item Load	1-pole		2-pole	
	Resistive load $(\cos \phi=1)$	Inductive load $(\cos \phi=0.4 ; L / R=7 \mathrm{~ms})$	Resistive load $(\cos \phi=1)$	Inductive load $(\cos \phi=0.4 ; \mathrm{L} / \mathrm{R}=7 \mathrm{~ms})$
Contact type	Single		Single	
Contact material	Ag-alloy (Cd free)			
Rated load	5 A at 250 VAC 5 A at 30 VDC	3.5 A at 250 VAC 2.5 A at 30 VDC	$\begin{aligned} & 3 \mathrm{~A} \text { at } 250 \mathrm{VAC} \\ & 3 \mathrm{~A} \text { at } 30 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{~A} \text { at } 250 \mathrm{VAC} \\ & 2 \mathrm{~A} \text { at } 30 \mathrm{VDC} \end{aligned}$
Rated carry current	5 A		3 A	
Max. switching voltage	380 VAC, 125 VDC		380 VAC, 125 VDC	
Max. switching current	5 A		3 A	
Failure rate (P level) (reference value) *	100 mA at 5 VDC		10 mA at 5 VDC	

* This value was measured at a switching frequency of 120 operations/min.

Characteristics

- Standard Relays

Item	Number of poles	1-pole	2-pole
Contact resistance *1		$30 \mathrm{~m} \Omega$ max.	$50 \mathrm{~m} \Omega$ max.
Operate time *2		15 ms max.	
Release time *2		AC: $10 \mathrm{~ms} \mathrm{max.;} \mathrm{DC:} 5 \mathrm{~ms} \mathrm{max}$.	
Max. operating frequency	Mechanical	18,000 operations/hr	
	Electrical	1,800 operations/hr	
Insulation resistance *3		1,000 M Ω min.	
Dielectric strength	Between coil and contacts	5,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min	
	Between contacts of different polarity	-	$\begin{aligned} & 3,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz} \\ & \text { for } 1 \mathrm{~min} \\ & \hline \end{aligned}$
	Between contacts of the same polarity	1,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min	
Insulation distance	Between coil and contacts	Clearance: 8 mm , Creepage: 8 mm	
Vibration resistance	Destruction	10 to 55 to $10 \mathrm{~Hz}, 0.75 \mathrm{~mm}$ single amplitude (1.5 mm double amplitude)	
	Malfunction	10 to 55 to $10 \mathrm{~Hz}, 0.75 \mathrm{~mm}$ single amplitude (1.5 mm double amplitude)	
Shock resistance	Destruction	$1,000 \mathrm{~m} / \mathrm{s}^{2}$	
	Malfunction	$200 \mathrm{~m} / \mathrm{s}^{2}$ when energized; $100 \mathrm{~m} / \mathrm{s}^{2}$ when no energized	
Durability	Mechanical	AC coil: 10,000,000 operations min.; DC coil: 20,000,000 operations min. (at 18,000 operations/hr)	
	Electrical	100,000 operations min. (at 1,800 operations/hr under rated load)	
Ambient operating temperature		$-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing)	
Ambient operating humidity		5\% to 85\%	
Weight		Approx. 17 g (Approx. $20 \mathrm{~g} * 4$)	

Note: The values here are initial values
*1. Measurement conditions: 5 VDC, 1 A, voltage-drop method
*2. Measurement conditions: Rated operating voltage applied, not including contact bounce.
*3. Measurement conditions: The insulation resistance was measured with a 500 VDC megohmmeter at the same locations as the dielectric strength was measured.
*4. Value for quick-connect terminals

Double-winding Latching Relays

Item	Number of poles	1-pole	2-pole
Contact resistance *1		$30 \mathrm{~m} \Omega$ max.	$50 \mathrm{~m} \Omega$ max.
Set	Time *2	20 ms max.	
	Min. set pulse width *3	30 ms	
Reset	Time *2	20 ms max .	
	Min. reset pulse width *3	30 ms	
Max.operating frequency	Mechanical	18,000 operations/hr	
	Electrical	1,800 operations/hr	
Insulation resistance *4		1,00	$\mathrm{\Omega}$ min.
Dielectric strength	Between coil and contacts	5,000 VAC, 50/60 Hz for 1 min	
	Between contacts of different polarity	-	$\begin{aligned} & 3,000 \mathrm{VAC}, \\ & 50 / 60 \mathrm{~Hz} \text { for } 1 \mathrm{~min} \end{aligned}$
	Between contacts of the same polarity	1,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min	
	Between set and reset coils	1,000 VAC, 50/60 Hz for 1 min	
Insulation distance	Between coil and contacts	Clearance: 8 mm , Creepage: 8 mm	
Vibration resistance	Destruction	10 to 55 to $10 \mathrm{~Hz}, 0.75 \mathrm{~mm}$ single amplitude (1.5 mm double amplitude)	
	Malfunction	$\begin{array}{r} 10 \text { to } 55 \text { to } 10 \\ \text { amplitude (1.5 } \end{array}$, 0.75 mm single double amplitude)
Shock resistance	Destruction	$1,000 \mathrm{~m} / \mathrm{s}^{2}$	
	Malfunction	Set: $500 \mathrm{~m} / \mathrm{s}^{2}$ A Reset: $200 \mathrm{~m} / \mathrm{s}^{2}$	ture OFF ntact OFF
Durability	Mechanical	10,000,000 operations min (at 18,000 operations/hr)	
	Electrical	100,000 operations min. (at 1,800 operations/hr under rated load)	
Ambient operating temperature		$-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing or condensation)	
Ambient operating humidity		5\% to 85\%	
Weight		Approx. 17 g	

Note: The values here are initial values.
*1. Measurement conditions: 5 VDC, 1 A , voltage-drop method
*2. Measurement conditions: Rated operating voltage applied, not including contact bounce.
*3. Measurement couditions: Rated operating voltage applied
*4. Measurement conditions: The insulation resistance was measured with a 500 VDC megohmmeter at the same locations as the dielectric strength was measured.

-Engineering Data

- Maximum Switching Capacity

 Flux Protection/Plug-in RelaysG2R-1, G2R-1A, G2R-1-T, G2R-1A-T

G2R-1-H, G2R-1A-H, G2R-2, G2R-2A

G2R-1-E, G2R-1A-E

G2R-2-H, G2R-2A-H

G2R-1Z, G2R-1AZ

G2RK-1A, G2RK-1

Fully Sealed Relays
G2R-14, G2R-1A4

- Durability

Flux Protection/Plug-in Relays

G2R-1, G2R-1A, G2R-1-T, G2R-1A-T

G2R-1-H, G2R-1A-H, G2R-2, G2R-2A

G2RK-2A, G2RK-2

G2R-24, G2R-2A4

G2R-1Z4, G2R-1AZ4

G2R-1-E, G2R-1A-E

G2R-2-H, G2R-2A-H

G2R-1Z, G2R-1AZ

G2RK-1A, G2RK-1

Fully Sealed Relays
G2R-14, G2R-1A4

Note: The maximum coil voltage refers to the maximum value in a varying range of operating power voltage, not a continuous voltage.

- Shock Malfunction

G2R-1 Number of Relays: 5 pcs

G2R-24, G2R-2A4

- Ambient Temperature vs. Must

 G2R-1

G2RK-2A, G2RK-2

Operate and Must Release Voltage

G2R-2 Number of Relays: 5 pcs

G2R-1Z4, G2R-1AZ4

G2R-2

- Keep-power decrement with time G2RK-1

Dimensions

Relays with PCB Terminals
(SPST-NO (1a) Relays)

Terminal Arrangement/ Internal Connections G2R-1A(-Z) G2R-1AZ G2R-1A-H

This illustration is the G2R-1A model.

Relays with PCB Terminals
(SPDT (1c) /High-capacity Relays)
G2R-1-E(Z)

Tolerance: $\pm 0.1 \mathrm{~mm}$
 (BOTTOM VIEW)

* Average value
** With AC coil or "-H" models: 0.3.

Relays with PCB Terminals
(SPST-NO (1a)/High-capacity Relays)
G2R-1A-E(Z)

PCB Mounting Holes (BOTTOM VIEW) Tolerance: $\pm 0.1 \mathrm{~mm}$

Terminal Arrangement/ Internal Connections (BOTTOM VIEW)

Relays with PCB Terminals
(DPDT (2c) Relays)

PCB Mounting Holes (BOTTOM VIEW) Tolerance: $\pm 0.1 \mathrm{~mm}$

Terminal Arrangement/ Internal Connections
(BOTTOM VIEW)

(No coil polarity)
?

G2R-2(-Z)
G2R-2-H

Relays with Quick-connect

Mounting Holes
(BOTTOM VIEW)
Tolerance: $\pm 0.1 \mathrm{~mm}$
Terminal Arrangement/ Internal Connections (BOTTOM VIEW)

(No coil polarity) quick-connect terminal is 187.

Relays with Quick-connect
Terminals (SPST-NO (1a) Relays) G2R-1A-T

Mounting Holes

 (BOTTOM VIEW) Tolerance: $\pm 0.1 \mathrm{~mm}$ quick-connect terminal is 187.Terminal Arrangement/ Internal Connections (BOTTOM VIEW)

Note: Model number of

(No coil polarity)

Approved Standards

- The approval rating values for overseas standards are different from the performance values determined individually. Confirm the values before use.

UL Recognized: $\boldsymbol{\}$ I File No. E41643
 1-pole} $$
\begin{tabular}{|c|c|c|c|c|} \hline Model & Contact form & Coil ratings & Contact ratings & Number of test operations \\ \hline G2R-1A & \multirow{4}{*}{\begin{tabular}{l} SPST-NO \\ (1a) \end{tabular}
$$

 \& \multirow{8}{*}{\[$$
\begin{aligned}
& 5 \text { to } 110 \text { VDC } \\
& 12 \text { to } 220 \text { VAC }
\end{aligned}
$$
\]} \& 10 A, 250 VAC (General Use) at $40^{\circ} \mathrm{C}$ \& 100,000

\hline G2R-1A4 \& \& \& \&

\hline G2R-1A-H \& \& \& Use) at $40^{\circ} \mathrm{C}$ \& 6,000

\hline G2R-1A-T \& \& \& \multirow{3}{*}{$10 \mathrm{~A}, 30 \mathrm{VDC}$ (Resistive) at $40^{\circ} \mathrm{C}$} \& \multirow{3}{*}{100,000}

\hline G2R-1 \& \multirow{4}{*}{| SPDT |
| :--- |
| (1c) |} \& \& \&

\hline G2R-14 \& \& \& \&

\hline G2R-1-H \& \& \& TV-3 (N. O. only) at \& 25,000

\hline G2R-1-T \& \& \& $40^{\circ} \mathrm{C}$ \&

\hline G2R-1AZ \& \multirow[t]{2}{*}{| SPST-NO |
| :--- |
| (1a) |} \& \multirow{4}{*}{\[

$$
\begin{aligned}
& 5 \text { to } 110 \text { VDC } \\
& 12 \text { to } 220 \text { VAC }
\end{aligned}
$$
\]} \& 5 A, 250 VAC (General \& \multirow{4}{*}{6,000}

\hline G2R-1AZ4 \& \& \& Use) at $40^{\circ} \mathrm{C}$ \&

\hline G2R-1Z \& \multirow[t]{2}{*}{| SPDT |
| :--- |
| (1c) |} \& \& $5 \mathrm{~A}, 30 \mathrm{VDC}$ (Resistive) \&

\hline G2R-1Z4 \& \& \& at $40^{\circ} \mathrm{C}$ \&

\hline G2R-1A-E \& | SPST-NO |
| :--- |
| (1a) | \& \multirow{3}{*}{\[

$$
\begin{aligned}
& 5 \text { to } 110 \text { VDC } \\
& 12 \text { to } 220 \text { VAC }
\end{aligned}
$$
\]} \& 16 A, 250 VAC (General Use) at $40^{\circ} \mathrm{C}$ \& 30,000

\hline \multirow[t]{2}{*}{G2R-1-E} \& \multirow[t]{2}{*}{| SPDT |
| :--- |
| (1c) |} \& \& 16 A, 30 VDC (Resistive) at $40^{\circ} \mathrm{C}$ \& 6,000

\hline \& \& \& $$
\begin{aligned}
& \text { TV-3 (N. O. only) at } \\
& 40^{\circ} \mathrm{C}
\end{aligned}
$$ \& 25,000

\hline
\end{tabular}

2-pole

Model	Contact form	Coil ratings	Contact ratings	Number of test operations
G2R-2A	$\begin{aligned} & \text { DPST-NO } \\ & \text { (2a) } \end{aligned}$	$\begin{aligned} & 5 \text { to } 110 \text { VDC } \\ & 12 \text { to } 220 \text { VAC } \end{aligned}$	$5 \mathrm{~A}, 250$ VAC (General	6,000
G2R-2A4			Use) at $40^{\circ} \mathrm{C}$	6,000
G2R-2A-H			$5 \mathrm{~A}, 30 \mathrm{VDC}$ (Resistive) at $40^{\circ} \mathrm{C}$	100,000
G2R-2	DPDT (2c)			
G2R-24			TV-3 (N. O. only) at	25,000
G2R-24-H			$40^{\circ} \mathrm{C}$	25,000

CSA Certified:® File No. LR31928 1-pole

Model	Contact form	Coil ratings	Contact ratings	Number of test operations
G2R-1A	SPST-NO (1a)	$\begin{aligned} & 5 \text { to } 110 \text { VDC } \\ & 12 \text { to } 220 \text { VAC } \end{aligned}$	10 A, 250 VAC (General Use) at $40^{\circ} \mathrm{C}$	100,000
G2R-1A4				
G2R-1A-H				
G2R-1A-T			$10 \mathrm{~A}, 30 \mathrm{VDC}$ (Resistive) at $40^{\circ} \mathrm{C}$	100,000
G2R-1	SPDT (1c)			
G2R-14				
G2R-1-H			TV-3 (N. O. only) at	25,000
G2R-1-T			$40^{\circ} \mathrm{C}$	
G2R-1AZ	SPST-NO (1a)	$\begin{aligned} & 5 \text { to } 110 \text { VDC } \\ & 12 \text { to } 220 \text { VAC } \end{aligned}$	5 A, 250 VAC (General	
G2R-1AZ4			Use) at $40^{\circ} \mathrm{C}$	6,000
G2R-1Z	SPDT (1c)		$5 \mathrm{~A}, 30 \mathrm{VDC}$ (Resistive)	
G2R-1Z4			at $40^{\circ} \mathrm{C}$	
G2R-1A-E	SPST-NO (1a)	$\begin{aligned} & 5 \text { to } 110 \text { VDC } \\ & 12 \text { to } 220 \text { VAC } \end{aligned}$	16 A, 250 VAC (General Use) at $40^{\circ} \mathrm{C}$	6,000
			$\begin{aligned} & 16 \mathrm{~A}, 30 \mathrm{VDC} \\ & \text { (Resistive) at } 40^{\circ} \mathrm{C} \end{aligned}$	
G2R-1-E	SPDT (1c)			
			$\begin{aligned} & \text { TV-3 (N. O. only) at } \\ & 40^{\circ} \mathrm{C} \end{aligned}$	25,000

2-pole

Model	Contact form	Coil ratings	Contact ratings	Number of test operations
G2R-2A	$\begin{aligned} & \text { DPST-NO } \\ & \text { (2a) } \end{aligned}$	$\begin{aligned} & 5 \text { to } 110 \text { VDC } \\ & 12 \text { to } 220 \text { VAC } \end{aligned}$	5 A, 250 VAC (General	
G2R-2A4			Use) at $40^{\circ} \mathrm{C}$	
G2R-2A-H			$5 \mathrm{~A}, 30 \mathrm{VDC}$ (Resistive)	00,000
G2R-2	DPDT (2c)		at $40^{\circ} \mathrm{C}$	00,000
G2R-24			TV-3 (N. O. only) at	25,000
G2R-24-H			$40^{\circ} \mathrm{C}$	

EN/IEC, VDE Certified: Ceriticate No. 40015012

Model	Contact form	Coil ratings	Contact ratings	Number of test operations
G2R-1(A)-E	1	$\begin{gathered} \hline 5,6,12,24, \\ 48,100 \text { VDC } \\ 12,24, \\ 100 / 110, \\ 200 / 220 \text { VAC } \end{gathered}$	$\begin{aligned} & 16 \mathrm{~A}, 250 \mathrm{VAC} \\ & (\cos \phi=1.0) \text { at } 70^{\circ} \mathrm{C} \end{aligned}$	100,000
G2R-()	1	$\begin{aligned} & 5,6,12,24, \\ & 48,100 \text { VDC } \end{aligned}$	$\begin{aligned} & 10 \mathrm{~A}, 250 \mathrm{VAC} \\ & (\cos \phi=1.0) \text { at } 40^{\circ} \mathrm{C} \end{aligned}$	
		$\begin{gathered} 12,24, \\ 100 / 110, \\ 200 / 220 \text { VAC } \end{gathered}$	$10 \mathrm{~A}, 30 \mathrm{VDC}(0 \mathrm{~ms})$ at $40^{\circ} \mathrm{C}$	
	2	$\begin{gathered} \hline 5,6,12,24, \\ 48,100 \text { VDC } \\ 12,24, \\ 100 / 110, \\ 200 / 220 \text { VAC } \end{gathered}$	$\begin{aligned} & 5 \mathrm{~A}, 250 \mathrm{VAC} \\ & (\cos \phi=1.0) \text { at } 40^{\circ} \mathrm{C} \end{aligned}$	
			$5 \mathrm{~A}, 30 \mathrm{VDC}(0 \mathrm{~ms})$ at $40^{\circ} \mathrm{C}$	

EN, TÜV Certified: Registration No. R50030327

Model	Contact form	Coil ratings	Contact ratings	Number of test operations
G2R-1(A)-E	1	$\begin{aligned} & 5 \text { to } 110 \text { VDC } \\ & 12 \text { to } 220 \text { VAC } \end{aligned}$	$\begin{aligned} & 16 \mathrm{~A}, 250 \mathrm{VAC} \\ & (\cos \phi=1.0) \text { at } 70^{\circ} \mathrm{C} \end{aligned}$	100,000
G2R-()	1	$\begin{aligned} & 5 \text { to } 110 \text { VDC } \\ & 12 \text { to } 220 \text { VAC } \end{aligned}$	$\begin{array}{\|l} \hline 10 \mathrm{~A}, 250 \mathrm{VAC} \\ (\cos \phi=1.0) \text { at } 70^{\circ} \mathrm{C} \\ \hline 10 \mathrm{~A}, 30 \mathrm{VDC}(0 \mathrm{~ms}) \text { at } \\ 70^{\circ} \mathrm{C} \end{array}$	
	2	$\begin{aligned} & 5 \text { to } 110 \text { VDC } \\ & 12 \text { to } 220 \text { VAC } \end{aligned}$	$\begin{array}{\|l\|} \hline 5 \mathrm{~A}, 250 \mathrm{VAC} \\ (\cos \phi=1.0) \text { at } 40^{\circ} \mathrm{C} \\ \hline 5 \mathrm{~A}, 30 \mathrm{VDC}(0 \mathrm{~ms}) \text { at } \\ 40^{\circ} \mathrm{C} \end{array}$	

DPrecautions

- Please refer to "PCB Relays Common Precautions" for correct use.

Correct Use

- Mounting

- When mounting a number of relays on a PCB, be sure to provide a minimum mounting space of 5 mm between the two juxtaposed relays as shown below.

- Handling

- The terminals are compatible with Faston receptacle \#187 and are suitable for positive-lock mounting. Use only Faston terminals with the specified numbers.
Select leads for connecting Faston receptacles with wire diameters that are within the allowable range for the load current.
Do not apply excessive force to the terminals when mounting or dismounting the Faston receptacle. Also, do not insert terminals at an angle, or insert/remove multiple terminals at the same time. Be sure to insert and remove terminals carefully one at a time.

Refer to the following table for examples of positive-lock connectors made by AMP. Contact the manufacturer directly for details on connectors including availability.

Type	Receptacle terminals	Positive housing
	AMP170330-1	AMP172074-1 (natural color) $(170324-1)$
\#187 (Width	AMP170331-1 (170325-1) $4.75)$	(yellow) AMP172074-4
	AMP170332-1 $(170326-1)$	(green) AMP172074-6 (blue)

Note: The numbers shown in parentheses are for air-feeding.

- Minimum Pulse Width of Doublewinding Latching Relays

- The minimum pulse width shown in the table of characteristics are values measured under conditions of ambient temperature at $23^{\circ} \mathrm{C}$ with rated operating voltage imposed on coil. The Relay may not provide a satisfactory performance as its holding ability decreases depending on the operating circuit conditions and ambient temperature, or decreases due to degradation over time. In actual operation, impose to the coil a rated operating voltage with a pulse width that is suitable to the actual load, and reset the setting at least once a year, to correspond to the degradation over time.
- When using the Relay in a strong magnetic field environment, the magnetic body may be demagnetized due to the influence of environment, causing the Relay to malfunction.

Therefore, do not use the Relay in a strong magnetic field environment.

- Degradation over Time of Doublewinding Latching Relays Holding Ability
- If a double-winding latching Relay is used left set for an extended period, changes over time will degrade the magnetic force, and the reduction in holding ability may cause the set status to be released. This is also because of the properties of semi-hard magnetic material, and the rate of degradation over time depends on the ambient environment (e.g., temperature, humidity, vibration, and presence or absence of external magnetic fields).Perform maintenance at least once a year by resetting, applying the rated voltage again, and then setting.
- Wiring High Capacity (-E) Models
- High-capacity models (-E) have a structure that connects two terminals from one contact.
When designing the circuit, use both terminals.
If you use only one terminal, the relay may be unable to satisfy specified performance.

Please check each region's Terms \& Conditions by region website.

OMRON Corporation

Electronic and Mechanical Components Company

Regional Contact

Americas

https://www.components.omron.com/
Asia-Pacific
https://ecb.omron.com.sg/
Korea
https://www.omron-ecb.co.kr/

Europe

http://components.omron.eu/
China
https://www.ecb.omron.com.cn/
Japan
https://www.omron.co.jp/ecb/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for General Purpose Relays category:
Click to view products by Omron manufacturer:

Other Similar products are found below :
PCN-105D3MH,000 59641F200 LY1SAC110120 5X827E 5X837F 5X840F 5X842F 5X848E LY2N-AC120 LY2S-AC220/240 LY2-US-
AC120 LY3-US-AC120 LY4F-UA-DC12 LY4F-UA-DC24 LY4F-US-AC120 LY4F-US-AC240 LY4F-US-DC24 LY4F-VD-AC110
LYQ20DC12 M115C60 M115N010 M115N0150 6031007G 603-12D 61211T0B4 61212T400 61222Q400 61243B600 61243C500
61243Q400 61311BOA2 61311BOA6 61311BOA8 61311C0A2 61311COA1 61311COA6 61311F0A2 61311QOA1 61311QOA4
$\underline{61311 \mathrm{~T} 0 \mathrm{D} 6} \underline{61311 \mathrm{TOA} 6} \underline{61311 \mathrm{TOA} 7} \underline{61311 \mathrm{TOB} 3} \underline{61311 \mathrm{TOB} 4} \underline{61311 \mathrm{U} 0 \mathrm{~A} 6} \underline{61312 \mathrm{Q} 600} \underline{61312 \mathrm{~T} 400} \underline{61312 \mathrm{~T} 600} \underline{61313 \mathrm{U} 200} \underline{61313 \mathrm{U} 400}$

[^0]: Note 1. Full-wave rectifier and supersonic cleaner compatible models are also available. Refer to page 3.

