G3VM-354C/F

MOS FET Relays

Analog-switching MOS FET Relays with DPST-NC Contact.

RoHS compliant
 RoHs complant

Note: The actual product is marked differently from the image shown here.

Application Examples

- Communication equipment
 - Security systems
 - FA systems

- Test \& Measurement equipment

Arrangement/Internal Connections

Note: The actual product is marked differently from the image shown here.

List of Models

Package type	Contact form	Terminals	Load voltage (peak value) *	Model	Minimum package quantity	
					Number per tube	Number per tape and reel
DIP8	$\begin{gathered} 2 \mathrm{~b} \\ \text { (DPST-NC) } \end{gathered}$	PCB Terminals	350 V	G3VM-354C	50	-
		Surface-mounting Terminals		G3VM-354F		
				G3VM-354F (TR)	-	1,500

* The AC peak and DC value are given for the load voltage.

Absolute Maximum Ratings $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Item	Symbol	Rating	Unit	Measurement conditions	
LED forward current	IF	50	mA		
- Repetitive peak LED forward current	IfP	1	A	$100 \mu s$ pulses, 100 pps	
글 LED forward current reduction rate	$\Delta \mathrm{lF} /{ }^{\circ} \mathrm{C}$	-0.5	$\mathrm{mA} /{ }^{\circ} \mathrm{C}$	$\mathrm{Ta} \geq 25^{\circ} \mathrm{C}$	
- LED reverse voltage	VR	5	V		
Connection temperature	TJ	125	${ }^{\circ} \mathrm{C}$		
Load voltage (AC peak/DC)	Voff	350	V		
흘 Continuous load current (AC peakIDC)	Io	150	mA		
O\% ON current reduction rate	$\Delta \mathrm{lo} /{ }^{\circ} \mathrm{C}$	-1.5	$\mathrm{mA} /{ }^{\circ} \mathrm{C}$	Ta $\geq 25^{\circ} \mathrm{C}$	
Connection temperature	TJ	125	${ }^{\circ} \mathrm{C}$		
Dielectric strength between I/0(See note 1.)	Vi-O	2500	Vrms	AC for 1 min	The dielectric strength between the input and output was checked by applying voltage between all pins as a group on the LED side and all pins as a group on the light-receiving side.
Ambient operating temperature	Ta	-40 to +85	${ }^{\circ} \mathrm{C}$	With no icing or condensation	
Ambient storage temperature	Tstg	-55 to +125	${ }^{\circ} \mathrm{C}$	With no icing or condensation	
Soldering temperature	-	260	${ }^{\circ} \mathrm{C}$	10 s	

Electrical Characteristics $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Item	Symbol	Minimum	Typical	Maximum	Unit	Measurement conditions
LED forward voltage	V_{F}	1.0	1.15	1.3	V	$\mathrm{IF}=10 \mathrm{~mA}$
\ddagger Reverse current	IR	-	-	10	$\mu \mathrm{A}$	$\mathrm{VR}=5 \mathrm{~V}$
드 Capacity between terminals	Ст	-	30	-	pF	$\mathrm{V}=0, \mathrm{f}=1 \mathrm{MHz}$
Trigger LED forward current	Ifc	-	1	3	mA	loff $=10 \mu \mathrm{~A}$
\pm Maximum resistance with output ON	Ron	-	15	25	Ω	$\mathrm{l}=150 \mathrm{~mA}$
윽 Current leakage when the relay is open	ILEAK	-	-	1.0	$\mu \mathrm{A}$	$\mathrm{IF}=5 \mathrm{~mA}$, Voff $=350 \mathrm{~V}$
O Capacity between terminals	Coff	-	85	-	pF	$\mathrm{V}=0, \mathrm{f}=1 \mathrm{MHz}$
Capacity between I/O terminals	Cl -o	-	0.8	-	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{Vs}=0 \mathrm{~V}, \mathrm{IF}=5 \mathrm{~mA}$
Insulation resistance between //0 terminals	Ri-o	1000	-	-	$\mathrm{M} \Omega$	$\mathrm{VI} \mathrm{O}=500 \mathrm{VDC}, \mathrm{RoH} \leq 60 \%$
Turn-ON time	ton	-	0.1	1.0	ms	$\begin{aligned} & \mathrm{IF}=5 \mathrm{~mA}, \mathrm{RL}=200 \Omega, \\ & \mathrm{VDD}=20 \mathrm{~V} \text { (See note 2.) } \end{aligned}$
Turn-OFF time	toff	-	1.0	3.0	ms	

Note: 2. Turn-ON and Turn-OFF Times

Recommended Operating Conditions

Use the G3VM under the following conditions so that the Relay will operate properly.

Item	Symbol	Minimum	Typical	Maximum	Unit
Load voltage (AC peak/DC)	VDD	-	-	280	V
Operating LED forward current	IF	5	-	25	mA
Continuous load current (AC peak/DC)	Io	-	-	150	mA
Ambient operating temperature	Ta	-20	-	65	${ }^{\circ} \mathrm{C}$

Engineering Data

LED forward current vs. Ambient temperature

Continuous load current vs. On-state voltage

Turn ON, Turn OFF time vs. LED forward current

Continuous load current vs. Ambient temperature

On-state resistance vs. Ambient temperature

Turn ON, Turn OFF time vs. Ambient temperature

LED forward current vs. LED forward voltage

Trigger LED forward current vs. Ambient temperature

Current leakage vs. Ambient temperature

Safety Precautions

- Refer to "Common Precautions" for all G3VM models.

Appearance

DIP (Dual Inline Package)
DIP8

Note: The actual product is marked differently from the image shown here.

PCB Terminals

Weight: 0.54 g

Note: The actual product is marked differently from the image shown here.

Actual Mounting Pad Dimensions
(Recommended Value, TOP VIEW)

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Solid State Relays - PCB Mount category:
Click to view products by Omron manufacturer:
Other Similar products are found below :
M86F-2W M90F-2Y G2-1A07-ST G2-1A07-TT G2-1B02-TT G2-DA06-ST 923812OCAS PLA134S DS11-1005 AQH3213J AQV212J AQY412EHAJ EFR1200480A150 901-7 LCA220 LCB110S 1618400-5 SR75-1ST AQH2213AJ AQV112KLJ AQV212AJ AQV238AD01 AQW414TS AQY221N2SYD01 AQY221R2VJ AQY275AXJ AQY414SXE01 G2-1A02-ST G2-1A03-ST G2-1A03-TT G2-1A05-ST G2-1A06-TT G2-1A23-TT G2-1B01-ST G2-1B01-TT G2-1B02-ST G2-DA03-ST G2-DA03-TT G2-DA06-TT CPC1333GR 3-1617776-2 CTA2425 TLP3131(F) LBA110S LBB110S LCA110LSTR LCB126S WPPM-0626D WPPM-3526D WPPM-3588D

