yOS FET Relays

G3VM-41LR3

World's Smallest SSOP Package MOS FET Relay* with Low Output Capacitance and ON Resistance ($C \times R=15 p F \bullet \Omega$) in a 40-V Load Voltage Model.

- Output capacitance of 0.6 pF (typical) allows high frequency applications.
- RoHS compliant
*Information correct as of May, 2007, according to data obtained by OMRON.

Application Examples

- Semiconductor inspection tools
- Measurement devices and Data loggers

Note: The actual product is marked differently from the image shown here.

- Broadband systems

List of Models

Contact form	Terminals	Load voltage (peak value)	Model	Number per tape
SPST-NO	Surface-mounting terminals	40 VAC	G3VM-41LR3	---
		G3VM-41LR3(TR)	1,500	

Dimensions

Note: All units are in millimeters unless otherwise indicated.
G3VM-41LR3

Note: The actual product is marked differently from the image shown here.

Note: A tolerance of $\pm 0.1 \mathrm{~mm}$ applies to all dimensions unless otherwise specified.

Weight: 0.03 g

■ Terminal Arrangement/Internal Connections (Top View)

G3VM-41LR3

Actual Mounting Pad Dimensions (Recommended Value, Top View)

G3VM-41LR3

Absolute Maximum Ratings ($\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Item		Symbol	Rating	Unit	Measurement Conditions
Input	LED forward current	I_{F}	50	mA	
	Repetitive peak LED forward current	$\mathrm{I}_{\text {FP }}$	1	A	$100 \mu \mathrm{~s}$ plus, 100 pps
	LED forward current reduction rate	$\Delta I_{F} /{ }^{\circ} \mathrm{C}$	-0.5	mA/ ${ }^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{a}} \geq 25^{\circ} \mathrm{C}$
	LED reverse voltage	V_{R}	5	V	
	Connection temperature	T_{j}	125	${ }^{\circ} \mathrm{C}$	
Output	Load voltage (AC peak/DC)	$\mathrm{V}_{\text {OFF }}$	40	V	
	Continuous load current	I_{0}	80	mA	
	ON current reduction rate	$\triangle \mathrm{ION}{ }^{1} \mathrm{C}$	-0.8	mA/ ${ }^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{a}} \geq 25^{\circ} \mathrm{C}$
	Connection temperature	T_{j}	125	${ }^{\circ} \mathrm{C}$	
Dielectric strength between input and output (See note 1.)		$\mathrm{V}_{1-\mathrm{O}}$	1,500	$\mathrm{V}_{\text {rms }}$	AC for 1 min
Ambient operating temperature		T_{a}	-20 to +85	${ }^{\circ} \mathrm{C}$	With no icing or condensation
Storage temperature		$\mathrm{T}_{\text {stg }}$	-40 to +125	${ }^{\circ} \mathrm{C}$	With no icing or condensation
Soldering temperature		---	260	${ }^{\circ} \mathrm{C}$	10 s

1. The dielectric strength between the input and output was checked by applying voltage between all pins as a group on the LED side and all pins as a group on the light-receiving side.

■ Electrical Characteristics ($\mathbf{T a}=25^{\circ} \mathrm{C}$)

Item		Symbol	Minimum	Typical	Maximum	Unit	Measurement conditions
Input	LED forward voltage	V_{F}	1.0	1.15	1.3	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
	Reverse current	I_{R}	---	---	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$
	Capacity between terminals	$\mathrm{C}_{\text {T }}$	---	15	---	pF	$\mathrm{V}=0, \mathrm{f}=1 \mathrm{MHz}$
	Trigger LED forward current	I_{FT}	---	--	4	mA	$\mathrm{I}_{\mathrm{O}}=80 \mathrm{~mA}$
Output	Maximum resistance with output ON	R_{ON}	---	25	35	Ω	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \\ & \mathrm{I}_{\mathrm{O}}=80 \mathrm{~mA}, \mathrm{t}=10 \mathrm{~ms} \end{aligned}$
	Current leakage when the relay is open	$\mathrm{I}_{\text {LEAK }}$	---	0.2	1.0	nA	$\mathrm{V}_{\text {OFF }}=30 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=50^{\circ} \mathrm{C}$
	Capacity between terminals	$\mathrm{C}_{\text {OFF }}$	---	0.6	1.4	pF	$\begin{aligned} & \mathrm{V}=0, \mathrm{f}=100 \mathrm{MHz}, \\ & \mathrm{t}<1 \mathrm{~s} \end{aligned}$
Capacity between I/O terminals		$\mathrm{C}_{1-\mathrm{O}}$	---	0.8	---	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}$
Insulation resistance between I/O terminals		$\mathrm{R}_{1-\mathrm{O}}$	1,000	---	---	$\mathrm{M} \Omega$	$\begin{aligned} & \mathrm{V}_{1-\mathrm{O}}=500 \mathrm{VDC}, \\ & \mathrm{R}_{\mathrm{oH}} \leq 60 \% \end{aligned}$
Turn-ON time		t_{ON}	---	0.03	0.5	ms	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=200 \Omega$,
Turn-OFF time		$\mathrm{t}_{\text {OFF }}$	---	0.12	0.5	ms	

Note: 2. Turn-ON and Turn-OFF Times

Recommended Operating Conditions

Use the G3VM under the following conditions so that the Relay will operate properly.

Item	Symbol	Minimum	Typical	Maximum	Unit
Load voltage (AC peak/DC)	V_{DD}	---	---	32	V
Operating LED forward current	I_{F}	10	---	30	mA
Continuous load current (AC peak/DC)	I_{O}	---	---	80	mA
Operating temperature	T_{a}	25	---	60	${ }^{\circ} \mathrm{C}$

Continuous load current vs. On-state voltage

Io - Von

Turn ON, Turn OFF time vs.
LED forward current
ton, toff - IF

LED forward current IF (mA)
Output terminal capacitance COFF/COFF(ov) vs. Load voltage

Continuous load current vs.
Ambient temperature Io - Ta

On-state resistance vs.
Ambient temperature
Ron - Ta

Turn ON, Turn OFF time vs. Ambient temperature ton, toff - Ta

Ambient temperature $\mathrm{Ta}\left({ }^{\circ} \mathrm{C}\right)$

LED forward current vs. LED forward voltage

$$
\mathrm{IF}-\mathrm{VF}
$$

Trigger LED forward current vs. Ambient temperature
IFT - Ta

Current leakage vs. Load voltage

Load voltage VOFF(v)

All sales are subject to Omron Electronic Components LLC standard terms and conditions of sale, which can be found at http://www.components.omron.com/components/web/webfiles.nsf/sales_terms.html

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.

To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

OmROn

OMRON ELECTRONIC COMPONENTS LLC
55 E. Commerce Drive, Suite B
Schaumburg, IL 60173

OMRON ON-LINE

Global - http://www.omron.com
USA - http://www.components.omron.com

847-882-2288

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Omron manufacturer:
Other Similar products are found below :
G9ED-1-B-AQ-DC24 E3X-SD11 2M S8VM-10024C R88A-CCW002P2 S82Y-VM30D H3AM-NS-A AC100-240 G3NA-440B-2 DC5-24 XF2J-0824-11A-R100 G3NA-425B-2 DC5-24 MY2N-DC24 XF2J-0824-12A G8JN-1C7T-R-DC12 G8VA-1A4T-R01-DC12 G8HE-1A7T-R-DC12 XF2W-2415-1A XF2U-3015-3A G8V-RH-1A7T-R-DC12 LY1D-2-5S-AC120 M165-JR-24D M16-TG-24D CS1G-CPU43-E M22CAT1 61F-GP-NT AC110 M7E-01DGN2-B M7E-02DGN2 M7E-08DRN2 M7E-20DRN1 M7E-HRN2 M8PHWS D2HW-BL211DL D2VW-5L2A-2MS F03-02 SUS316 F150LTC20 F3SJ-A0245P30 F3STGRNSMC21M1J8 F3UVHM MG2-US-AC24 MGN1C-DC24 MK2EP-UA-AC6V MK2PNIAC240 MK310E-DC24 MKS2XTIN-11 DC110 MM4KPAC120NC MM4XPAC120 G2Q-184P-V-DC5 G2R-1114P-V-US-DC5 G2R13SNDDC24 G2R-1-T 5VDC G2R-2 240VAC G2R-2 48VAC

