G3VM－51PR
 MOS FET Relays

Smallest Class in market，USOP Package MOS FET Relays is designed to exhibit a fast rise time and reduce signal degradation．

－ERT（Equivalent Rise Time）： 40 ps（typ．）， 90 ps（max）
－Dielectric strength of 500 Vrms between I／O．

Refer to＂Common Precautions＂．

Application Examples

•Semiconductor test	• Communication
equipment	equipment
\bullet Test \＆measurement	• Data loggers
equipment	

Note：The actual product is marked differently from the image shown here．
Terminal Arrangement／Internal Connections

Note：The actual product is marked differently from the image shown here．

List of Models

Package type	Contact form	Terminals	Load voltage（peak value） （See note．）	Model	Minimum package quantity
	Number per tape $\&$ reel				
USOP4	1a （SPST－NO）	Surface－mounting terminals	50 V	G3VM－51PR	-
				500	
			G3VM－51PR（TR）	1,500	

Note 1．Ask you OMRON representative for orders under 1,500 pcs or 500 pcs ．
2．Tape－cut USOPs are packaged without humidity resistance．Use manual soldering to mount them．Refer to common precautions．
3．The AC peak and DC value is given for the load voltages．
■Absolute Maximum Ratings（ $\mathrm{Ta}=25^{\circ} \mathrm{C}$ ）

Item	Symbol	Rating	Unit	Measurement conditions
LED forward current	IF	50	mA	
亏 LED forward current reduction rate	$\Delta \mathrm{F} /{ }^{\circ} \mathrm{C}$	－0．5	$\mathrm{mA} /{ }^{\circ} \mathrm{C}$	$\mathrm{Ta} \geq 25^{\circ} \mathrm{C}$
$\stackrel{\text { LED reverse voltage }}{ }$	VR	5	V	
Connection temperature	TJ	125	${ }^{\circ} \mathrm{C}$	
Load voltage（AC peak／DC）	Voff	50	V	
－Continuous load current（AC peak／DC）	10	300	mA	
응 ON current reduction rate	$\Delta \mathrm{lo} /{ }^{\circ} \mathrm{C}$	－3．0	$\mathrm{mA} /{ }^{\circ} \mathrm{C}$	$\mathrm{Ta} \geq 25^{\circ} \mathrm{C}$
\leftrightharpoons Pulse ON current	lop	900	mA	t＝100ms，Duty＝1／10
Connection temperature	TJ	125	${ }^{\circ} \mathrm{C}$	
Dielectric strength between I／O（See note 1．）	V1－0	500	Vrms	AC for 1 min
Ambient operating temperature	Ta	－40～＋85	${ }^{\circ} \mathrm{C}$	With no icing or condensation
Ambient storage temperature	Tstg	$-40 \sim+125$	${ }^{\circ} \mathrm{C}$	With no icing or condensation
Soldering temperature	－	260	${ }^{\circ} \mathrm{C}$	10s

Note：1．The dielectric strength between the input and output was checked by applying voltage between all pins as a group on the LED side and all pins as a group on the light－receiving side．

■Electrical Characteristics（ $\mathrm{Ta}=\mathbf{2 5 ^ { \circ }}$ ）

Item	Symbol	Minimum	Typical	Maximum	Unit	Measurement conditions	Note：2．Turn－ON and Turn－OFF Times
LED forward voltage	V_{F}	1.0	1.15	1.3	V	$\mathrm{IF}=10 \mathrm{~mA}$	
亏 Reverse current	IR	－	－	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$	$\xrightarrow{R L} \mathrm{O}_{\text {do }} \mathrm{V}$ IF
\subsetneq Capacity between terminals	Ст	－	15	－	pF	$\mathrm{V}=0, \mathrm{f}=1 \mathrm{MHz}$	\bigcirc
Trigger LED forward current	Ift	－	0.5	3	mA	$10=100 \mathrm{~mA}$	$\searrow_{10 \%}$
Maximum resistance with output ON	Ron	－	1	1.5	Ω	$\mathrm{lF}=5 \mathrm{~mA}, \mathrm{lo}=300 \mathrm{~mA}, \mathrm{t}<1 \mathrm{~s}$	$1.1 \text { toff }$
$\begin{array}{ll}\text { 을 } & \text { Current leakage when the relay is } \\ \text { 亳 } \\ \text { open }\end{array}$	ILEAK	－	－	1	nA	Voff＝50V	Note：3．ERT（Equivalent Rise Time）
Capacity between terminals	Coff	－	12	－	pF	$\mathrm{V}=0, \mathrm{f}=100 \mathrm{MHz}, \mathrm{t}<1 \mathrm{~s}$	250 mV
Capacity between I／O terminals	$\mathrm{Cl}-\mathrm{O}$	－	0.4	－	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{Vs}=0 \mathrm{~V}$	90\％$\%$
Insulation resistance between I／O terminals	Ri－o	1000	－	－	M ת	VI－O＝500VDC，RoH $\leq 60 \%$	
Turn－ON time	ton	－	0.2	0.5	ms	$\begin{aligned} & \mathrm{IF}=5 \mathrm{~mA}, \mathrm{RL}=200 \Omega, \\ & \mathrm{~V} D \mathrm{D}=20 \mathrm{~V} \text { (See note 2.) } \end{aligned}$	
Turn－OFF time	toff	－	0.1	0.4	ms		Input waveform Output waveform
Equivalent rise time	ERT	－	40	90	ps	$\begin{aligned} & \mathrm{IF}=5 \mathrm{~mA}, \mathrm{VDD}=0.25 \mathrm{~V}, \\ & \mathrm{Tr}(\mathrm{in})=25 \mathrm{ps} \text { (See Note.3) } \end{aligned}$	

Recommended Operating Conditions

Use the G3VM under the following conditions so that the Relay will operate properly．

Item	Symbol	Minimum	Typical	Maximum	Unit
Load voltage（AC peak／DC）	VDD	-	-	40	V
Operating LED forward current	IF	5	7.5	20	mA
Continuous load current（AC peak／DC）	Io	-	-	300	mA
Ambient operating temperature	Ta	-20	-	65	${ }^{\circ} \mathrm{C}$

Engineering Data

LED forward current vs．
Ambient temperature

Continuous load current vs．
On－state voltage

Turn ON，Turn OFF time vs．
LED forward current

Output terminal capacitance
COFF／COFF（ov）vs．Load voltage
Coff - Voff

Continuous load current vs． Ambient temperature

On－state resistance vs．
Ambient temperature

Turn ON，Turn OFF time vs．
Ambient temperature

LED forward current vs． LED forward voltage

Trigger LED forward current vs．
Ambient temperature

Current leakage vs．Load voltage

Safety Precautions

－Refer to＂Common Precautions＂for all G3VM models．

Appearance

USOP (Ultra Small Outline Package)
USOP4

Note: The actual product is marked differently from the image shown here.

Surface-mounting Terminals
Weight: 0.03g

Actual Mounting Pad Dimensions
(Recommended Value, Top View)

Note: The actual product is marked differently from the image shown here.

[^0]Note: Do not use this document to operate the Unit.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Solid State Relays - PCB Mount category:
Click to view products by Omron manufacturer:
Other Similar products are found below :
M86F-2W M90F-2Y G2-1A07-ST G2-1A07-TT G2-1B02-TT G2-DA06-ST 923812OCAS PLA134S DS11-1005 AQV212J AQY412EHAJ EFR1200480A150 901-7 LCA220 LCB110S 1618400-5 SR75-1ST AQH2213AJ AQV112KLJ AQV212AJ AQV212SXJ AQV238AD01 AQW414TS AQY221N2SYD01 AQY221R2VJ AQY275AXJ AQY414SXE01 G2-1A02-ST G2-1A03-ST G2-1A03-TT G2-1A05-ST G2-1A06-TT G2-1A23-TT G2-1B01-ST G2-1B01-TT G2-1B02-ST G2-DA03-ST G2-DA03-TT G2-DA06-TT CPC1333GR 3-1617776-2 CTA2425 TLP3131(F) LBA110S LBB110S LCA110LSTR LCB126S WPPM-0626D WPPM-3526D WPPM-3588D

[^0]: - Application examples provided in this document are for reference only. In actual applications, confirm equipment functions and safety before using the product.
 - Consult your OMRON representative before using the product under conditions which are not described in the manual or applying the product to nuclear control systems, railroad systems, aviation systems, vehicles, combustion systems, medical equipment, amusement machines, safety equipment, and other systems or equipment that may have a serious influence on lives and property if used improperly. Make sure that the ratings and performance characteristics of the product provide a margin of safety for the system or equipment, and be sure to provide the system or equipment with double safety mechanisms.

