Miniature Single-pole Relay with 80A Surge Current and 20A Switching Current

- Capable of Switching Motor Load of 80-A Surge Current and 20A Switching/Cut-off Current
- Miniature, relay with high switching power and long endurance.
- Creepage distance conforms to UL and CSA standards.
- Highly noise-resistive insulation materials employed.
- Standard model available with flux protection construction.

RoHS Compliant

Model Number Legend

G4A- $\square \square-\square$ - \square $\overline{1} \overline{2} \quad \overline{3} \quad \overline{4}$

1. Number of Poles

1: 1-pole
2. Contact Form

A: SPST-NO (1a)
3. Terminal Shape

None: \#250 quick-connect/
PCB coil terminals
P : PCB terminals/
PCB coil terminals

Application Examples

- Air conditioner

4. Special Function

E: For long endurance

■Ordering Information

- Quick-connect/PCB coil terminals

Contact form	Load Contact Terminal	Coil terminal	Model	Rated voltage	Minimum packing unit
SPST-NO (1a)	\#250 quick-connect terminals	PCB terminals	G4A-1A-E	12,24 VDC	50 pcs/tray

- PCB terminals

Contact form	Load Contact Terminal	Coil terminal	Model	Rated voltage	Minimum packing unit
SPST-NO (1a)	PCB terminals	PCB terminals	G4A-1A-PE	12,24 VDC	50 pcs/tray

Note. When ordering, add the rated coil voltage to the model number.
Example: G4A-1A-E DC12
However, the notation of the coil voltage on the product case as well as on the packing will be marked as $\square \square$ VDC.

Ratings

- Coil

Item	Rated current	$\begin{gathered} \text { Coil } \\ \text { resistance } \end{gathered}$	Must operate voltage (V)	Must release voltage (V)	Max. permissible voltage (V)	Power consumption(W)
Rated voltage	(mA)	(Ω)	\% of rated voltage			
12 VDC	75	160	70\% max.	10\% min.	160%	0.9
24 VDC	37.5	640			at $23^{\circ} \mathrm{C}$)	

Note 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$.
2. The inductances shown above are reference values.
3. Operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$.
4. Max. permissible voltage refers to the maximum value in a varying range of operating power voltage, not a continuous voltage

- Contacts

Item	Reasistive load
Contact type	Single
Contact material	Ag-Alloy (Cd free)
Rated load	20 A at 250 VAC
Rated carry current	20 A
Max. switching voltage	250 VAC
Max. switching current	20 A

- Motor Ratings

Load conditions	Switching frequency	Electrical durability		
250 VAC: Inrush current: 80 A, 0.3 s (cos $\phi=0.7$)	ON: 1.5 s Break current: 20 A (cos $\phi=0.9$)	OFF: 1.5 s	200,000	operations
:---				

- Inverter Ratings

Load conditions	$\begin{array}{l}\text { Switching } \\ \text { frequency }\end{array}$	$\begin{array}{c}\text { Electrical } \\ \text { durability }\end{array}$
100 VAC:		
Inrush current:		
200 A (0.P)		
Break current: 20 A		

OFF: 5 \mathrm{~s}\end{array}\right)\)| 30,000 |
| :---: |
| operations |$|$

- Overload Durability (Reference Value)

Load conditions	Switching frequency	Electrical durability
250 VAC:		
Inrush current: 80 A Break current: 80 A (cos $\phi=0.7$)	ON: 1.5 s OFF: 99 s	1,500 operations

Characteristics

Contact resistance *1		$100 \mathrm{~m} \Omega$ max.
Operate time		20 ms max .
Release time		10 ms max .
Max. operating frequency	Mechanical	18,000 operations/hr
Insulation resistance *2		1,000 M 2 min.
Dielectric strength	Between coil and contacts	4,500 VAC $50 / 60 \mathrm{~Hz}$ for 1 min
	Between contacts of the same polarity	1,000 VAC $50 / 60 \mathrm{~Hz}$ for 1 min
Impulse withstand voltage	Between coil and contacts	$8.5 \mathrm{kV}(1.2 \times 50 \mu \mathrm{~s})$
Insulation distance	Between coil and contacts	Clearance: 3.2 mm , Creepage: 6.4 mm
Vibration resistance	Destruction	10 to 55 to 10 Hz , 0.75 mm single amplitude (1.5 mm double amplitude)
	Malfunction	10 to 55 to 10 Hz , 0.75 mm single amplitude (1.5 mm double amplitude)
Shock resistance	Destruction	$1,000 \mathrm{~m} / \mathrm{s}^{2}$
	Malfunction	$200 \mathrm{~m} / \mathrm{s}^{2}$
Durability	Mechanical	2,000,000 operations min. (at 18,000 operations/hr)
	Resistive load	100,000 operations min. (ON/OFF: 1 s)
	Motor load	200,000 operations min. (ON/OFF: 1.5 s)
	Inverter load	30,000 operations min. (ON: 3 s , OFF: 5 s)
Failure rate (P level) (reference value *3)		100 mA at 5 VDC
Ambient operating temperature		$-20^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ (with no icing or condensation)
Ambient operating humidity		5\% to 85\%
Weight		Approx. 23 g

Note. The data given above are initial values.
*1. Measurement conditions: 5 VDC, 1 A, voltage drop method.
*2. Measurement conditions: The insulation resistance was measured with a 500 VDC megohmmeter at the same locations as the dielectric strength was measured.
*3. This value was measured at a switching frequency of 120 operations $/ \mathrm{min}$.

PCB Power Relay

Engineering Data

- Maximum Switching Capacity

 G4A-1A-(P)E

- Ambient Temperature vs. Must Operate and Must Release Voltages G4A-1A-(P)E

G
4
A

- Durability

G4A-1A-(P)E

- Shock Malfunction

G4A-1A-(P)E
Number of Relays: 5 pcs

- Ambient Temperature vs. Maximum Coil Voltage G4A-1A-(P)E

Note. The maximum coil voltage is the maximum voltage that can be applied to the relay coil.

Dimensions

\#250 quick-connect/PCB coil terminals

 G4A-1A-E

Mounting Holes

(Bottom View)
Four, $1.8^{+0.1}{ }^{1}$ dia.

Terminal Arrangement/Internal Connections

> (Top View) (Bottom View)

Straight PCB/PCB coil terminals

 G4A-1A-PE

PCB Mounting Holes

Terminal Arrangement/ Internal Connections
(Bottom View)

4
(No coil polarity)

Approved Standards

-The rated values approved by each of the safety standards may be different from the performance characteristics individually defined in this datasheet.

UL RecognizedY((File No. E41643)

Model	Number of poles	Coil ratings	Contact ratings	Number of test operations
$\begin{aligned} & \text { G4A-1A-E } \\ & \text { G4A-1A-PE } \end{aligned}$	SPST-NO (1a)	12 to 24 VDC	20 A, 250 VAC (Resistive) $40^{\circ} \mathrm{C}$	100,000
			$15 \mathrm{~A}, 30 \mathrm{VDC}$ (Resistive) $40^{\circ} \mathrm{C}$	
			23 A, 277 VAC (General Purpose) $40^{\circ} \mathrm{C}$	30,000
			TV-15 $120 \mathrm{~V} \mathrm{AC} 40^{\circ} \mathrm{C}$	25,000

CSA Certified (File No. LR31928)

Model	Number of poles	Coil ratings	Contact ratings	Number of test operations
$\begin{aligned} & \text { G4A-1A-E } \\ & \text { G4A-1A-PE } \end{aligned}$	SPST-NO (1a)	12 to 24 VDC	$\begin{aligned} & 20 \mathrm{~A}, 250 \text { VAC (Resistive) } \\ & 40^{\circ} \mathrm{C} \end{aligned}$	10,000
			$\begin{aligned} & 15 \mathrm{~A}, 30 \mathrm{VDC} \text { (Resistive) } \\ & 40^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	
			23 A, 277 VAC (General Purpose) $40^{\circ} \mathrm{C}$	30,000
			TV-15 $120 \mathrm{~V} \mathrm{AC} 40^{\circ} \mathrm{C}$	25,000

EN/IEC, VDE Certified (Certificate No. 107293)

Model	Number of poles	Coil ratings	Contact ratings	Number of test operations
G4A-1A-E G4A-1A-PE	SPST-NO (1a)	12,24 VDC	$20 \mathrm{~A}, 250 \mathrm{VAC}(\cos \phi=1.0)$ $50^{\circ} \mathrm{C}$	100,000

Precautions

-Please refer to "PCB Relays Common Precautions" for correct use.

Correct Use

- Mounting

- When mounting more than two Relays side by side, keep a 3 mm gap horizontally and vertically between Relays to ensure a good heat dissipation. It may cause a malfunction if heat is not dissipated smoothly from the Relay.

- Terminals

- The terminals fit FASTON receptacle 250 and are suitable for positive-lock mounting. Use only Faston terminals with the specified numbers.
Select leads for connecting Faston receptacles with wire diameters that are within the allowable range for the load current.
Do not apply excessive force to the terminals when mounting or dismounting the Faston receptacle. Insert and remove terminals carefully one at a time. Do not insert terminals at an angle, or insert/remove multiple terminals at the same time. Refer to the following table for recommendations of connectors made by OMRON.

Type	Receptacle terminals	Housing
\#250 terminals (width: 6.35 mm)	XT3W-S441-12 XT3W-S442-12 XT3W-S443-12	XT3B-1S white

- Other Precautions

- This Relay is suitable for power load switching of air-conditioning compressors and power supplies, etc. Do not use the G4A to switch micro loads less than 100 mA , such as in signal applications.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for General Purpose Relays category:
Click to view products by Omron manufacturer:
Other Similar products are found below :
PCN-105D3MH,000 59641F200 5JO-1000CD-SIL 5X827E 5X837F 5X840F 5X842F 5X848E LY2N-AC120 LY2S-AC220/240 LY2-USAC120 LY2-US-DC24 LY3-US-AC120 LY4F-UA-DC12 LY4F-UA-DC24 LY4F-US-AC120 LY4F-US-AC240 LY4F-US-DC24 LY4F-VD-AC110 LYQ20DC12 M115C60 M115N010 M115N0150 603-12D 60HE1-5DC 60HE2S-12DC 61211T0B4 61212T400 61222Q400 $\underline{61243 \mathrm{~B} 600} \underline{61243 \mathrm{C} 500} \underline{61243 \mathrm{Q} 400} \underline{61311 \mathrm{BOA} 2} \underline{61311 \mathrm{BOA} 6} \underline{61311 \mathrm{BOA} 8} \underline{61311 \mathrm{C} 0 \mathrm{~A} 2} \underline{61311 \mathrm{COA} 1} \underline{61311 \mathrm{COA}} \underline{61311 \mathrm{~F} 0 \mathrm{~A} 2}$ 61311QOA1 61311QOA4 61311T0D6 61311TOA6 61311TOA7 61311TOB3 61311TOB4 61311U0A6 61312Q600 61312T400 61312 T 600

