G5V-1

Ultra-miniature, Highly Sensitive SPDT Relay for Signal Circuits

- Ultra-miniature at $12.5 \times 7.5 \times 10 \mathrm{~mm}(\mathrm{~L} \times \mathrm{W} \times \mathrm{H})$.
- Wide switching power of 1 mA to 1 A .
- High sensitivity: 150 mW nominal coil power consumption.
- Fully-sealed construction offering environment resistance.
- Conforms to FCC Part 68 requirements for coil to contacts. ($1,500 \mathrm{~V}, 10 \times 160 \mu \mathrm{~s}$)

RoHS Compliant

Model Number Legend

G5V- \square 1. Number of Poles/Contact Form
1: 1-pole/SPDT (1c)

Application Examples

- Telecommunication equipment
- Audio-visual products

■Ordering Information

Classification	Enclosure rating	Contact form	Terminal Shape	Model	Rated coil voltage	Minimun packing unit
Standard	Fully sealed	SPDT (1c)	PCB terminals	G5V-1	3 VDC	25 pcs/tube
					5 VDC	
					6 VDC	
					9 VDC	
					12 VDC	
					24 VDC	

Note 1. When ordering, add the rated coil voltage to the model number
Example: G5V-1 3 VDC
L Rated coil voltage
2. A special series of bifurcated crossbar contacts models are also available

■Ratings

-Coil

Rated voltage	Rated current	Coil resistance	Must operate voltage (V)	Must release voltage (V)	Max. voltage (V)	Power consumption (mW)
			\% of rated voltage			
3 VDC	50	60	80\% max.	10\% min.	$\begin{gathered} 200 \% \text { at } \\ 23^{\circ} \mathrm{C} \end{gathered}$	Approx. 150
5 VDC	30	167				
6 VDC	25	240				
9 VDC	16.7	540				
12 VDC	12.5	960				
24 VDC	6.25	3,840				

Note 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$.
2. The operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$.
3. The maximum voltage is the highest voltage that can be imposed on the relay coil.
-Contacts

| Item |
| :--- | :--- | Load \quad Resistive load

Characteristics

Contact resistance *1		$100 \mathrm{~m} \Omega$ max.	Note: The values here are initial values. *1. Measured with 10 mA at 1 VDC with a voltage drop method.	
Operate time		5 ms max.		
Release time		5 ms max.		
Insulation resistance *2		$1,000 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC between coil and contacts, at 250 VDC between contacts of same polarity.)		
Dielectric strength	Between coil and contacts	1,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min		
	Between contacts of the same polarity	$400 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min		
Vibration resistance	Destruction	10 to 55 to $10 \mathrm{~Hz}, 1.65 \mathrm{~mm}$ single amplitude (3.3 mm double amplitude)		
	Malfunction	10 to 55 to $10 \mathrm{~Hz}, 1.65 \mathrm{~mm}$ single amplitude (3.3 mm double amplitude)		coil and contacts and a 250 VDC megohmmeter between contacts with the same polarity applied to
Shock resistance	Destruction	$1,000 \mathrm{~m} / \mathrm{s}^{2}$		the same parts as those used for checking the
	Malfunction	$100 \mathrm{~m} / \mathrm{s}^{2}$		dielectric strength.
Durability	Mechanical	5,000,000 operations min. (at 36,000 operations/hr)	*3.	This value was measured at a switching frequency
	Electrical	100,000 operations min. (under rated load, at 1,800 operations/hr)		of 120 operations $/ \mathrm{min}$ and the criterion of contact resistance is 100Ω.
Failure rate (P level) (reference value) *3		1 mA at 5 VDC		This value may vary depending on the switching
Ambient operating temperature		$-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing or condensation)		frequency and operating environment. Always
Ambient operating humidity		5\% to 85\%		double-check relay suitability under actual operating
Weight		Approx. 2 g		conditions.

Engineering Data

-Maximum Switching Capacity

-Ambient Temperature vs. Must Operate or Must Release Voltage

-Dial Pulse Test *1

-Durability

eShock Malfunction

Test conditions: Shock is applied in $\pm \mathrm{X}, \pm \mathrm{Y}$, and $\pm Z$ directions three times each with and without energizing the Relays to check the number of contact malfunctions.

-Contact Reliability Test *1, *2

Ambient Temperature vs.

 Maximum Coil Voltage

Note: The maximum coil voltage refers to the maximum value in a varying range of operating power voltage, not a continuous voltage.

*1. The tests were conducted at an ambient temperature of $23^{\circ} \mathrm{C}$
*2. The contact resistance data are periodically measured reference values and are not values from each monitoring operation. Contact resistance values will vary according to the switching frequency and operating environment, so be sure to check operation under the actual operating conditions before use.

OHigh-frequency Characteristics

- Test Conditions

Terminals which were not being measured were terminated with 50Ω Measuring impedance: 50Ω

Note: The high-frequency characteristics data were measured using a dedicated circuit board and actual values will vary depending on the usage conditions. Check the characteristics of the actual equipment being used.
-High-frequency Characteristics (Isolation) *1, *2

-Must Operate and Must Release Time Distribution *1

OHigh-frequency Characteristics (Insertion Loss) *1, *2

-Distribution of Bounce Time *1

-High-frequency Characteristics
(Return Loss, V.SWR) *1, *2

1. The tests were conducted at an ambient temperature of $23^{\circ} \mathrm{C}$.
*2. High-frequency characteristics depend on the PCB to which the Relay is mounted. Always check these characteristics, including endurance, in the actual machine before use.

Dimensions

G5V-1

Note: Each value has a tolerance of $\pm 0.3 \mathrm{~mm}$.

Approved Standards

UL recognized: $\boldsymbol{Y I}$ (File No. E41515)
CSA certified: © (File No. LR31928)

Model	Contact form	Coil ratings	Contact ratings	Number of test operations
G5V-1	SPDT (1c)	3 to 24 VDC	$1 \mathrm{~A}, 30$ VDC at $40^{\circ} \mathrm{C}$ $0.3 \mathrm{~A}, 110$ VDC at $40^{\circ} \mathrm{C}$	6,000
		$0.5 \mathrm{~A}, 125$ VAC at $40^{\circ} \mathrm{C}$	100,000	

PCB Mounting Holes Terminal Arrangement/ Internal Connections

Precautions

- Please refer to "PCB Relays Common Precautions" for correct use.
Correct Use

- Long-term Continuously ON Contacts

Using the Relay in a circuit where the Relay will be ON continuously for long periods (without switching) can lead to unstable contacts, because the heat generated by the coil itself will affect the insulation, causing a film to develop on the contact surfaces. Be sure to use a fail-safe circuit design that provides protection against contact failure or coil burnout.

- Relay Handling

When washing the product after soldering the Relay to a PCB, use a water-based solvent or alcohol-based solvent, and keep the solvent temperature to less than $40^{\circ} \mathrm{C}$. Do not put the Relay in a cold cleaning bath immediately after soldering.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for General Purpose Relays category:
Click to view products by Omron manufacturer:
Other Similar products are found below :
PCN-105D3MH,000 59641F200 5JO-1000CD-SIL 5X827E 5X837F 5X840F 5X842F 5X848E LY2N-AC120 LY2S-AC220/240 LY2-USAC120 LY2-US-DC24 LY3-US-AC120 LY4F-UA-DC12 LY4F-UA-DC24 LY4F-US-AC120 LY4F-US-AC240 LY4F-US-DC24 LY4F-VD-AC110 LYQ20DC12 M115C60 M115N010 M115N0150 603-12D 60HE1-5DC 60HE2S-12DC 61211T0B4 61212T400 61222Q400 $\underline{61243 \mathrm{~B} 600} \underline{61243 \mathrm{C} 500} \underline{61243 \mathrm{Q} 400} \underline{61311 \mathrm{BOA} 2} \underline{61311 \mathrm{BOA} 6} \underline{61311 \mathrm{BOA} 8} \underline{61311 \mathrm{C} 0 \mathrm{~A} 2} \underline{61311 \mathrm{COA} 1} \underline{61311 \mathrm{COA}} \underline{61311 \mathrm{~F} 0 \mathrm{~A} 2}$ 61311QOA1 61311QOA4 61311T0D6 61311TOA6 61311TOA7 61311TOB3 61311TOB4 61311U0A6 61312Q600 61312T400 61312 T 600

