General-purpose, Low-cost, Two-pole Relays for Signal Circults

- General-purpose DIL terminal layout.
- Wide switching power of $10 \mu \mathrm{~A}$ to 2 A .
- Fully-sealed type Relays standardized with bifurcated crossbar contacts. Highly reliable in addition to its high environment resistance.
- Conforms to FCC Part 68 (impulse withstand voltage of $1,500 \mathrm{~V}$ for $10 \times 160 \mu \mathrm{~s}$ between coil and contacts and between contacts of the same polarity).
- High dielectric strength at 1,000 VAC between coil and contacts, and 750 VAC between contacts of the same polarity.
- UL and CSA standard approved.

RoHS Compliant

Model Number Legend

G5V- $\frac{\square}{1}-\frac{\square}{2}$

1. Number of Poles/ Contact form
2. Classification

None: Standard
H1: High-sensitivity

Application Examples

- Telecommunication equipment
- Security equipment

■Ordering Information

Classification	Enclosure rating	Contact form	Terminal shape	Model	Rated coil voltage	Minimum packing unit
Standard	Fully sealed	DPDT (2c)	PCB terminals	G5V-2	3 VDC	$\begin{gathered} 25 \\ \text { pcs/tube } \end{gathered}$
					5 VDC	
					6 VDC	
					9 VDC	
					12 VDC	
					24 VDC	
					48 VDC	
Highsensitivity				G5V-2-H1	5 VDC	
					12 VDC	
					24 VDC	
					48 VDC	

Note: When ordering, add the rated coil voltage to the model number.
Example: G5V-2 DC3.
L-Rated coil voltage
However, the notation of the coil voltage on the product case as well as on the packing will be marked as $\square \square$ VDC.

Item	Classification	Standard	High-sensitivity
Contact resistance *1		$50 \mathrm{~m} \Omega$ max.	$100 \mathrm{~m} \Omega$ max.
Operate time		7 ms max .	
Release time		3 ms max .	
Insulation resistance *2		$1,000 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC)	
Dielectric strength	Between coil and contacts	1,000 VAC, 50/60 Hz for 1 min	
	Between contacts of the same polarity	$\begin{aligned} & 750 \mathrm{VAC}, 50 / 60 \mathrm{~Hz} \\ & \text { for } 1 \mathrm{~min} \end{aligned}$	500 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min
	Between contacts of different polarity	1,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min	
Impulse withstand voltage	Between coil and contacts	$1,500 \mathrm{~V}(10 \times 160 \mu \mathrm{~s})$	
	Between contacts of the same polarity	$1,500 \mathrm{~V}(10 \times 160 \mu \mathrm{~s})$	
	Between contacts of different polarity	$1,500 \mathrm{~V}(10 \times 160 \mu \mathrm{~s})$	
Vibration resistance	Destruction	10 to 55 to $10 \mathrm{~Hz}, 0.75 \mathrm{~mm}$ single amplitude (1.5 mm double amplitude)	
	Malfunction	10 to 55 to $10 \mathrm{~Hz}, 0.75 \mathrm{~mm}$ single amplitude (1.5 mm double amplitude)	
Shock resistance	Destruction	$1,000 \mathrm{~m} / \mathrm{s}^{2}$	
	Malfunction	$200 \mathrm{~m} / \mathrm{s}^{2}$	$100 \mathrm{~m} / \mathrm{s}^{2}$
Durability	Mechanical	15,000,000 operations min. (at 36,000 operations/hr)	
	Electrical	100,000 operations min. (at 1,800 operations/hr)	AC: 100,000 operations min., DC: 300,000 operations min. (at 1,800 operations/hr)
Failure rate (P level) (reference value) *3		$10 \mu \mathrm{~A}$ at 10 m VDC	
Ambient operating temperature		$\begin{aligned} & -25^{\circ} \mathrm{C} \text { to } 65^{\circ} \mathrm{C} \\ & \text { (with no icing or } \\ & \text { condensation) } \end{aligned}$	$\begin{aligned} & -25^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \text { (with no icing or } \\ & \text { condensation) } \end{aligned}$
Ambient operating humidity		5\% to 85\%	
Weight		Approx. 5 g	

Note: The above values are initial values.
*1. The contact resistance was measured with 10 mA at 1 VDC with a voltage drop method.
*2. The insulation resistance was measured with a 500 VDC megohmmeter applied to the same parts as those used for checking the dielectric strength.
*3. This value was measured at a switching frequency of 120 operations/min and the criterion of contact resistance is 50Ω. This value may vary depending on the switching frequency and operating environment. Always double-check relay suitability under actual operating conditions.

Ratings

-Coil

Classification	Rated voltage	Rated current (mA)	Coil resistance (Ω)	Must operate voltage (V)	Must release voltage (V)	Max. voltage (V)	Power consumption (mW)
				\% of rated voltage			
Standard	3 VDC	166.7	18	75% max.	$\begin{aligned} & 5 \% \\ & \mathrm{~min} . \end{aligned}$	$\begin{gathered} 120 \% \\ \text { (at } 23^{\circ} \mathrm{C} \text {) } \end{gathered}$	Approx. 500
	5 VDC	100	50				
	6 VDC	83.3	72				
	9 VDC	55.6	162				
	12 VDC	41.7	288				
	24 VDC	20.8	1,152				
	48 VDC	12	4,000				Approx. 580
Highsensitivity	5 VDC	30	166.7	$75 \%$$\max .$	$\begin{aligned} & 5 \% \\ & \text { min. } \end{aligned}$	$\begin{gathered} 180 \% \\ \text { (at } \left.23^{\circ} \mathrm{C}\right) \end{gathered}$	Approx. 150
	12 VDC	12.5	960				
	24 VDC	8.33	2,880				Approx. 200
	48 VDC	6.25	7,680			$\begin{array}{\|c\|} \hline 150 \% \\ \text { (at } 23^{\circ} \mathrm{C} \text {) } \end{array}$	Approx. 300

Note 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$.
2. Operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$.
3. The maximum voltage is the highest voltage that can be imposed on the relay coil.
-Contacts

Classification	Standard	High-sensitivity
Load	Resistive load	
Contact type	Bifurcated crossbar	
Contact material	Ag + Au-alloy	
Rated load	$\begin{aligned} & \text { 0.5 A at } 125 \text { VAC; } \\ & 2 \mathrm{~A} \text { at } 30 \mathrm{VDC} \end{aligned}$	$\begin{gathered} 0.5 \mathrm{~A} \text { at } 125 \mathrm{VAC} ; \\ 1 \mathrm{~A} \text { at } 24 \mathrm{VDC} \end{gathered}$
Rated carry current	2 A	
Max. switching voltage	125 VAC, 125 VDC	
Max. switching current	2 A	1 A

Engineering Data

©Maximum Switching Capacity Standard/G5V-2

High-sensitivity/G5V-2-H1

-Ambient Temperature vs. Maximum Coil Voltage Standard/G5V-2

High-sensitivity/G5V-2-H1

Note: The maximum coil voltage refers to the maximum value in a varying range of operating power voltage, not a continuous voltage.

-Ambient Temperature vs. Must Operate or Must Release

Voltage
Standard/G5V-2

High-sensitivity/G5V-2-H1

-Durability Standard/G5V-2

High-sensitivity/G5V-2-H1

-Shock Malfunction Standard/G5V-2

High-sensitivity/G5V-2-H1

Conditions: Shock is applied in $\pm \mathrm{X}, \pm \mathrm{Y}$, and $\pm \mathrm{Z}$ directions three times each with and without energizing the Relays to check the number of contact malfunctions.

-Dial Pulse Test

(with Must Operate and Must Release Voltage) *1 Standard/G5V-2

ODial Pulse Test (Contact Resistance) *1

-Contact Reliability Test *1, *2 Standard/G5V-2

High-sensitivity/G5V-2-H1

*1. The tests were conducted at an ambient temperature of $23^{\circ} \mathrm{C}$
*2. The contact resistance data are periodically measured reference values and are not values from each monitoring operation. Contact resistance values will vary according to the switching frequency and operating environment, so be sure to check operation under the actual operating conditions before use.

-High-frequency Characteristics

- Measurement Conditions

Note: The high-frequency characteristics data were measured using a dedicated circuit board and actual values will vary depending on the usage conditions. Check the characteristics of the actual equipment being used.

Terminals which were not being measured were terminated with 50Ω. Measuring impedance: 50Ω

OHigh-frequency Characteristics
(Isolation) *1, *2

OHigh-frequency Characteristics (Insertion Loss) *1, *2

-High-frequency Characteristics (Return Loss, V.SWR) *1, *2

OMust Operate and Must Release Time Distribution *1 Standard/G5V-2

-Distribution of Bounce Time *1

-Must Operate and Must Release Time Distribution *1 High-sensitivity/G5V-2-H1

-Distribution of Bounce Time *1

*1. The tests were conducted at an ambient temperature of $23^{\circ} \mathrm{C}$.
*2. High-frequency characteristics depend on the PCB to which the Relay is mounted. Always check these characteristics, including endurance, in the actual machine before use.

Dimensions

G5V-2

Approved Standards

UL recognized: $\boldsymbol{\chi 1}$ (File No. E41515)

CSA certified:© (File No. LR31928)

Model	Contact form	Coil ratings	Contact ratings		Number of test operations
			G5V-2	G5V-2-H1	
G5V-2	DPDT (2c)	$\begin{array}{\|c} 3 \text { to } 48 \\ \text { VDC } \end{array}$	$2 \mathrm{~A}, 30 \mathrm{VDC}$ at $40^{\circ} \mathrm{C}$	$2 \mathrm{~A}, 24 \mathrm{VDC}$ at $40^{\circ} \mathrm{C}$	6,000
			$0.6 \mathrm{~A}, 110 \mathrm{VDC}$ at $40^{\circ} \mathrm{C}$	0.2 A, 110 VDC at $40^{\circ} \mathrm{C}$	
			$0.6 \mathrm{~A}, 125 \mathrm{VAC}$ at $40^{\circ} \mathrm{C}$	$0.5 \mathrm{~A}, 125 \mathrm{VAC}$ at $40^{\circ} \mathrm{C}$	

Precautions

- Please refer to "PCB Relays Common Precautions" for correct use.

Correct Use
 - Long-term Continuously ON Contacts

Using the Relay in a circuit where the Relay will be ON continuously for long periods (without switching) can lead to unstable contacts because the heat generated by the coil itself will affect the insulation, causing a film to develop on the contact surfaces. Be sure to use a fail-safe circuit design that provides protection against contact failure or coil burnout.

- Relay Handling

When washing the product after soldering the Relay to a PCB, use a water-based solvent or alcohol-based solvent, and keep the solvent temperature to less than $40^{\circ} \mathrm{C}$. Do not put the Relay in a cold cleaning bath immediately after soldering.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Low Signal Relays - PCB category:
Click to view products by Omron manufacturer:

Other Similar products are found below :
LZN4-US-DC12 LZNQ4-US-DC24 LZNQ4-US-DC48 6-1393813-4 6-1462039-0 6-1617347-5 6-1617353-3 6-1617529-6 M39016/20054M M39016/27-030M 67RPCX-3 MAHC-5494 D3493L 7-1393809-0 7-1393813-3 741B8 7556072001 MF-11AM-24 MF1201N12 MF-17A-24 FBR244D012/02CP FBR244D024/02CS 80.010.4522.1 FL-4036 FLH-11D-6 831A7 MMS124 FTR-B4GA006Z FW1102S06 FW1201S39 FW1210S02 FW1521S01 FW5A1201S14 9-1393813-6 9-1617582-5 G6AK-2-H-DC5 G6E-184P-ST-US-DC48 G6G234CDC24 A07A939BZ1-0388 A150-0005 PZ-2A2420 HB1-DC6V HB1-DC9V R10-14A10-240 R10-14D10-12 R10-5A10-120F R10-E1L8-S200 R10-E2468-1 R10-E4Z2-V700 R10-T1L2N-115V

