Low Signal Relay

World's Standard Model G6A!

- Resistant to electromagnetic interference, enables high-density mounting.
- Impulse withstand voltage of $\mathbf{1 , 5 0 0 V}$ meets FCC requirements.
- Gold-clad twin-contacts provide short contact bounce in addition to its high contact reliability.
- A variety of products that cover a wide range of use.

RoHS Compliant

Model Number Legend

G6A $\frac{\square}{1}-\frac{\square}{2} \frac{\square}{3} \frac{\square}{4} \frac{\square}{5}-\frac{\square-}{6} \frac{\square}{7}$

1. Relay Function

None : Single-side stable
U : Single-winding latching
K : Double-winding latching
2. Contact Form

2: DPDT (2c)
3. Contact Type

7: Bifurcated crossbar Ag (Au-Alloy)
4. Protective Structure

4: Fully sealed
5. Terminal Shape

P: PCB Terminals
6. Classification

None : Standard
ST : Stand-off 0.64 mm
15 : High-sensitivity (150 mW)
40 : Low-sensitivity
(Single-side Stable: 400 mW Double-winding Latching: 360 mW)

7. Approved Standards

None : Standard
US : UL/C-UL

■Ordering Information

oUL/C-UL Certified Models

Relay Function	Classification	Contact form	Model	Rated coil voltage (VDC)	Minimum packing unit
Single-side Stable Type	Standard	DPDT (2c)	G6A-274P-ST-US	3, 4.5, 5, 6, 9, 12, 24	25 pcs/tube
				48	
	Low-sensitivity		G6A-274P-ST40-US	3, 5, 6, 9, 12, 24	
				48	
	High-sensitivity		G6A-274P-ST15-US	3, 5, 6, 9, 12, 24	
			G6A-274P-ST15-US	48	
Single-winding Latching Type	Standard		G6AU-274P-ST-US	3, 4.5, 5, 6, 9, 12, 24	
				48	
Double-winding Latching Type	Standard		G6AK-274P-ST-US	3, 4.5, 5, 6, 9, 12, 24	
				48	
	Low-sensitivity		G6AK-274P-ST40-US	3, 5, 6, 9, 12, 24	
				48	

Note: When ordering, add the rated coil voltage to the model number.
Example: G6A-274P-ST-US DC3
L_ Rated coil voltage
However, the notation of the coil voltage on the product case as well as on the packing will be marked as $\square \square$ VDC.

Ratings

－Coil：Single－side Stable（Standard Models）

Contact form	Rated voltage	Rated current （mA）	Coil resistance (Ω)	Must operate voltage （V）	Must release voltage （V）	Max．voltage （V）	Power consumption （ mW ）
				\％of rated voltage			
DPDT（2c）	3 VDC	66.7	45	70\％max．	10\％min．	$\begin{gathered} 200 \% \\ \text { (at } 23^{\circ} \mathrm{C} \text {) } \end{gathered}$	Approx． 200
	4．5 VDC	44.6	101				
	5 VDC	40.0	125				
	6 VDC	33.3	180				
	9 VDC	22.2	405				
	12 VDC	16.7	720				
	24 VDC	8.3	2，880				
	48 VDC	4.9	9，750				Approx． 235

Note 1．The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$ ．
2．Operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$ ．
3．The maximum voltage is the highest voltage that can be imposed on the relay coil．
©Coil：Single－side Stable（Low－sensitivity Models）

Contact form	Rated voltage	Rated current （mA）	Coil resistance (Ω)	Must operate voltage （V）	Must release voltage （V）	Max．voltage （V）	Power consumption （ mW ）
				\％of rated voltage			
DPDT（2c）	3 VDC	133.3	22.5	70\％max．	10\％min．	$\begin{gathered} 150 \% \\ \text { (at } 23^{\circ} \mathrm{C} \text {) } \end{gathered}$	Approx． 400
	5 VDC	80	62.5				
	6 VDC	66.7	90				
	9 VDC	44.3	203				
	12 VDC	33.3	360				
	24 VDC	16.7	1，440				
	48 VDC	8.3	5，760				

Note 1．The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$ ．
2．Operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$ ．
3．The maximum voltage is the highest voltage that can be imposed on the relay coil．
－Coil：Single－side Stable（High－sensitivity Models）

Contact form	Rated voltage	Rated current （mA）	Coil resistance （ Ω ）	Must operate voltage （V）	Must release voltage （V）	Max．voltage （V）	Power consumption （ mW ）
				\％of rated voltage			
DPDT（2c）	3 VDC	50	60	80\％max．	10\％min．	$\begin{gathered} 200 \% \\ \text { (at } 23^{\circ} \mathrm{C} \text {) } \end{gathered}$	Approx． 150
	4．5 VDC	33.3	135				
	5 VDC	30	167				
	6 VDC	25	240				
	9 VDC	16.7	540				
	12 VDC	12.5	960				
	24 VDC	6.3	3，840				
	48 VDC	3.2	15，000				

Note 1．The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$ ．
2．Operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$ ．
3．The maximum voltage is the highest voltage that can be imposed on the relay coil．

©Coil：Single－winding Latching

Contact form	Rated voltage	Rated current	Coil resistance	Set voltage（V）	Reset voltage（V）	Max．voltage（V）	Power consumption （ mW ）
				\％of rated voltage			
DPDT（2c）	3 VDC	33.7	89	70\％max．	70\％max．	$\begin{gathered} 200 \% \\ \text { (at } 23^{\circ} \mathrm{C} \text {) } \end{gathered}$	Approx． 100
	5 VDC	20	250				
	6 VDC	16.7	360				
	9 VDC	11.1	810				
	12 VDC	8.3	1，440				
	24 VDC	4.2	5，760				
	48 VDC	2.5	19，000				Approx． 120

[^0]-Coil: Double-winding Latching (Standard Models)

Contact form	Rated voltage	Rated current (mA)	Coil resistance (Ω)	Set voltage (V)	Reset voltage (V)	Max. voltage (V)	Power consumption(mW)
				\% of rated voltage			
DPDT (2c)	3 VDC	66.7	45	70\% max.	70\% max.	$\begin{gathered} 200 \% \\ \text { (at } 23^{\circ} \mathrm{C} \text {) } \end{gathered}$	Approx. 200
	4.5 VDC	40.2	112				Approx. 180
	5 VDC	36	139				
	6 VDC	30	200				
	9 VDC	20	450				
	12 VDC	15	800				
	24 VDC	7.5	3,200				
	48 VDC	4.2	11,520				Approx. 200

Note1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$.
2. Operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$.
3. The maximum voltage is the highest voltage that can be imposed on the relay coil.
-Coil: Double-winding Latching (Low-sensitivity Models)

Contact form	Rated voltage	Rated current (mA)	Coil resistance (Ω)	Set voltage (V)	Reset voltage (V)	Max. voltage (V)	Power consumption (mW)
				\% of rated voltage			
DPDT (2c)	3 VDC	120	25	70\% max.	70\% max.	$\begin{gathered} 150 \% \\ \left(\text { at } 23^{\circ} \mathrm{C}\right) \end{gathered}$	Approx. 360
	4.5 VDC	79.9	56.3				
	5 VDC	72.5	69				
	6 VDC	60	100				
	9 VDC	40	225				
	12 VDC	30	400				
	24 VDC	15	1,600				
	48 VDC	7.5	6,400				

Note 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$.
2. Operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$.
3. The maximum voltage is the highest voltage that can be imposed on the relay coil.

-Contacts

| Load | Resistive load | $\begin{array}{c}\text { Inductive load } \\ \left(\begin{array}{c}\text { cos } \phi=0.4 ; \\ \text { L/R }=7 \mathrm{~ms}\end{array}\right.\end{array}$ |
| :--- | :---: | :---: |$]$

■Characteristics

Item Classification		Single-side Stable	Single-winding Latching	Double-winding Latching
Contact resistance *1		$50 \mathrm{~m} \Omega$ max.		
Operate (set) time		5 ms max.	5 ms max .	
Release (reset) time		3 ms max .	5 ms max .	
Min. set/reset signal width		-	10 ms	
Insulation resistance *2		1,000 $\mathrm{M} \Omega \mathrm{min}$. (at 500 VDC); except for set-reset		
Dielectric strength	Between coil and contacts	1,000 VAC, 50/60 Hz for 1 min		
	Between contacts of the same polarity	1,000 VAC, 50/60 Hz for 1 min		
	Between contacts of different polarity	1,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min		
	Between set and reset coils	-	-	250 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min
Impulse withstand voltage		$1,500 \mathrm{~V}(10 \times 160 \mu \mathrm{~s})$ (conforms to FCC Part 68)		
Vibration resistance	- Destruction	10 to 55 to $10 \mathrm{~Hz}, 2.5 \mathrm{~mm}$ single amplitude (5 mm double amplitude)		
	Malfunction	10 to 55 to $10 \mathrm{~Hz}, 1.65 \mathrm{~mm}$ single amplitude (3.3 mm double amplitude)		
Shock resistance	Destruction	$1,000 \mathrm{~m} / \mathrm{s}^{2}$		
	Malfunction	$500 \mathrm{~m} / \mathrm{s}^{2}$	$300 \mathrm{~m} / \mathrm{s}^{2}$	
Durability	Mechanical	100,000,000 operations min. (at 36,000 operations/hr)		
	Electrical	500,000 operations min. (at 1,800 operations/hr)		
Failure rate (P level) *3		$10 \mu \mathrm{~A}$ at 10 m VDC		
Ambient operating temperature		$-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing or no condenstion)		
Ambient operating humidity		5\% to 85\%		
Weight		Approx. 3.5 g		

[^1]*1. The contact resistance was measured with 10 mA at 1 VDC with a voltage drop method.
*2. The insulation resistance was measured with a 500 VDC megohmmeter applied to the same parts as those used for checking the dielectric strength (except between the set and reset coil).
*3. This value was measured at a switching frequency of 60 operations $/ \mathrm{min}$ and the criterion of contact resistance is 50Ω. This value may vary, depending on switching frequency, operating conditions, expected reliability level of the relay, etc. It is always recommended to double-check relay suitability under actual load conditions.

IEngineering Data

-Maximum Switching Power

-Ambient Temperature vs. Maximum Coil Voltage

Note: "Maximum voltage" is the maximum voltage that can be applied to the Relay coil.

OShock Malfunction

G6A-274P

-Durability

-Ambient Temperature vs. Must Operate or Must Release Voltage

Test Conditions: Shock is applied in $\pm X, \pm Y$, and $\pm Z$ directions three times each with and without energizing the Relays to check the number of contact malfunctions.

-Electrical Durability Test *1

-Contact Reliability Test *1, *2

*1. The tests were conducted at an ambient temperature of $23^{\circ} \mathrm{C}$.
*2. The contact resistance data are periodically measured reference values and are not values from each monitoring operation. Contact resistance values will vary according to the switching frequency and operating environment, so be sure to check operation under the actual operating conditions before use.

OMutual Magnetic Interference

G6A-274P

-External Magnetic Interference

G6AK-274P
 (Average value)

G6A-274P

G6AK-274P

(Average value)

G6AK-274P

-Time distribution of Operating and Release/Set and Reset *1

G6A-274P

G6AK-274P

-Bounce Time distribution of Operating and Release/Set and Reset *1

G6A-274P

G6AK-274P

-High-frequency Characteristics

- Measurement Conditions

Terminals which were not being measured were terminated with 50Ω.
Measuring impedance: 50Ω
Note: The high-frequency characteristics data were measured using a dedicated circuit board and actual values will vary depending on the usage conditions. Check the characteristics of the actual equipment being used.

OHigh-frequency Characteristics (Isolation) *1, *2

OHigh-frequency Characteristics (Insertion Loss) *1, *2

OHigh-frequency Characteristics
(Return Loss, V.SWR) *1, *2

*1. The tests were conducted at an ambient temperature of $23^{\circ} \mathrm{C}$.
*2. High-frequency characteristics depend on the PCB to which the Relay is mounted. Always check these characteristics, including durability, in the actual machine before use.
－Dimensions

Single－side stable
G6A－274P－ST－US
G6A－274P－ST40－US

G6A－274P－ST15－US

PCB Mounting Holes
（BOTTOM VIEW）
Tolerance：± 0.1

Note：Orientation marks are indicated as follows：

Terminal Arrangement／ Internal Connections （BOTTOM VIEW）

Note：Check carefully the coil polarity of the Relay．

Single－winding latching

G6AU－274P－ST－US

Note：Each value has a tolerance of $\pm 0.3 \mathrm{~mm}$ ．

Double－winding latching
G6AK－274P－ST－US
G6AK－274P－ST40－US

PCB Mounting Holes
（BOTTOM VIEW）
Tolerance：± 0.1
Terminal Arrangement／ （BOTTO

Note：Orientation marks are indicated as follows：：－－

Note：Check carefully the coil polarity of the Relay．

Terminal Arrangement／ Internal Connections （BOTTOM VIEW）

Note：Check carefully the coil polarity of the Relay．

Approved Standards

To order the model that is certified for the UL/C-UL standards, add "-US" to the end of the model number.

UL/C-UL Recognized. c ${ }^{\boldsymbol{7}} \mathbf{I U S}_{\text {us }}$ (File No.E41515)

Classification	Contact form	Coil ratings	Model	Contact ratings	Number of test operations
Single-side stable	DPDT (2c)	3 to 48 VDC	G6A-274P-ST-US	$0.6 \mathrm{~A}, 125 \mathrm{VAC}$ at $40^{\circ} \mathrm{C}$ $2 \mathrm{~A}, 30 \mathrm{VAC}$ at $40^{\circ} \mathrm{C}$ $0.6 \mathrm{~A}, 110 \mathrm{VAC}$ at $40^{\circ} \mathrm{C}$	6,000
Latching			G6AK-274P-ST-US G6AU-274P-ST-US		
Low-sensitivity			G6A(K)-274P-ST40-US		
High-sensitivity			G6A-274P-ST15-US		

Precautions

-Please refer to "РСВ Relays Common Precautions" for correct use.

Correct Use

-Long-term Continuously ON Contacts
Using the Relay in a circuit where the Relay will be ON continuously for long periods (without switching) can lead to unstable contacts because the heat generated by the coil itself will affect the insulation, causing a film to develop on the contact surfaces. We recommend using a latching relay (magnetic-holding relay) in this kind of circuit. If a single-side stable model must be used in this kind of circuit, we recommend using a fail-safe circuit design that provides protection against contact failure or coil burnout.

-Relay Handling

When washing the product after soldering the Relay to a PCB, use a water-based solvent or alcohol-based solvent, and keep the solvent temperature to less than $40^{\circ} \mathrm{C}$. Do not put the Relay in a cold cleaning bath immediately after soldering.

-Double-switching load in two poles

Double-switching in two poles as shown in the figure below, one pole and two pole interval may become MBB (Make Before Break) mechanically according to the timing of the point of contact switching (By the short-circuit mode), and the malfunction might be caused.
In such a circuit, direct electric switching should be avoided, and concern for contact to be carried after the contact of Relay absolutely switches in condition of no load.

[^2]Note: Do not use this document to operate the Unit.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for General Purpose Relays category:
Click to view products by Omron manufacturer:

Other Similar products are found below :

```
APF30318 JVN1AF-4.5V-F PCN-105D3MHZ 5JO-10000S-SIL 5JO-1000CD-SIL 5JO-400CD-SIL LY2S-AC220/240 LYQ20DC12
6031007G 6131406HQ 6-1393099-8 6-1393122-4 6-1393123-2 6-1393767-1 %-1393843-7 6-1415012-1 6-1419102-2 6-1423698-4 6-
1608051-6 6-1608067-0 6-1616170-6 6-1616248-2 6-1616282-3 6-1616348-2 6-1616349-9 6-1616350-1 6-1616350-8 6-1616358-7 6-
1616359-9 6-1616360-9 6-1616931-6 6-1617039-1 6-1617052-1 6-1617090-2 6-1617090-5 6-1617347-5 6-1617353-3 6-1617801-8 6-
1618107-9 6-1618248-4 CX-4014 MAHC-5494 MAVCD-5419-6 703XCX-120A 7-1393100-5 7-1393111-7 7-1393767-8 7-1414968-8 7-
1419130-3 7-1608047-2
```


[^0]: Note 1．The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$ ．
 2．Operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$ ．
 3．The maximum voltage is the highest voltage that can be imposed on the relay coil．

[^1]: Note: The data shown above are initial values

[^2]: - Application examples provided in this document are for reference only. In actual applications, confirm equipment functions and safety before using the product.
 - Consult your OMRON representative before using the product under conditions which are not described in the manual or applying the product to nuclear control systems, railroad systems, aviation systems, vehicles, combustion systems, medical equipment, amusement machines, safety equipment, and other systems or equipment that may have a serious influence on lives and property if used improperly. Make sure that the ratings and performance characteristics of the product provide a margin of safety for the system or equipment, and be sure to provide the system or equipment with double safety mechanisms.

