Surface Mounting Relay with the World's Smallest Mounting Area and a Height of
 Only 5.2 mm

- Subminiature model as small as $5.2(\mathrm{H}) \times 6.5(\mathrm{~W}) \times 10(\mathrm{~L}) \mathrm{mm}$ is ideal for high-density mounting.
- Low profile of 5.2 mm improves mounting efficiency.
- Light weight of 0.7 g contributes to higher speed mounting.
- Consumes approximately 70% the power of a conventional OMRON model and operates at a current that is as low as 100 mW .
- Surface mounting terminal models incorporate a unique terminal structure with high infrared irradiation efficiency which allows the terminal temperature to rise easily when mounting the IRS, thus ensuring excellent soldering.
- Ensures a dielectric strength of 1,500 VAC and conforms to FCC Part 68 (i.e., withstanding an impulse withstand voltage of $1,500 \mathrm{~V}$ for $10 \times 160 \mu \mathrm{~s}$).
- New-Y models offer an impulse withstand voltage of $2,500 \mathrm{~V}$ for $2 \times 10 \mu \mathrm{~s}$ (conforms to Telcordia specifications) by optimizing the distance between coil and contacts.
- Standard model conforms to UL/CSA standards.

RoHS Compliant

Model Number Legend

G6K $\frac{\square}{1}-\frac{\square}{2} \frac{\square}{3}-\frac{\square}{4}$

1. Relay function

None : Single-side stable model
U : Single-winding latching model

3. Terminal Shape

F: Outside-L surface mounting terminals
G : Inside-L surface mounting terminals
P : PCB terminals
4. Approved standards

None : UL, CSA
Does not conform to Telcordia specifications
Y : UL, CSA
Conforms to Telcordia specifications: $2,500 \mathrm{~V}$ for $2 \times 10 \mu \mathrm{~s}$

Ordering Information

OSurface Mounting Terminal Standard Models (UL, CSA certified)

$\begin{array}{\|l\|} \hline \text { Relay } \\ \text { Function } \end{array}$	Enclosure rating	Contact form	Model	Rated coil voltage	Minimum packing unit
Single-side stable	Fully sealed	DPDT (2c)	G6K-2F	3 VDC	50 pcs/tube (900 pcs/reel)
				4.5 VDC	
				5 VDC	
				12 VDC	
				24 VDC	
			Highly insulated G6K-2F-Y	3 VDC	
				4.5 VDC	
				5 VDC	
				12 VDC	
				24 VDC	
			G6K-2G	3 VDC	
				4.5 VDC	
				5 VDC	
				12 VDC	
				24 VDC	
			Highly insulated G6K-2G-Y	3 VDC	
				4.5 VDC	
				5 VDC	
				12 VDC	
				24 VDC	
Single-winding latching	Fully sealed	DPDT (2c)	Highly insulated G6KU-2F-Y	3 VDC	
				4.5 VDC	
				5 VDC	
				12 VDC	
				24 VDC	
				3 VDC	
			Highly	4.5 VDC	
			insulated	5 VDC	
			G6KU-2G-Y	12 VDC	
				24 VDC	

OPCB Terminal Standard Models (UL, CSA certified)

Relay Function	$\begin{gathered} \text { Enclosure } \\ \text { rating } \end{gathered}$	Contact form	Model	Rated coil voltage	Minimum packing unit
Single-side stable	Fully sealed	DPDT (2c)	G6K-2P	3 VDC	$\begin{gathered} 50 \\ \text { pcs/tube } \end{gathered}$
				4.5 VDC	
				5 VDC	
				12 VDC	
				24 VDC	
			Highly insulated G6K-2P-Y	3 VDC	
				4.5 VDC	
				5 VDC	
				12 VDC	
				24 VDC	
Single-winding latching	Fully sealed	$\begin{aligned} & \text { DPDT } \\ & \text { (2c) } \end{aligned}$	Highly insulated G6KU-2P-Y	3 VDC	
				4.5 VDC	
				5 VDC	
				12 VDC	
				24 VDC	

Note 1. When ordering, add the rated coil voltage to the model number. Example: G6K-2F 3 VDC

- Rated coil voltage

Note 2. When ordering tape packing, add -TR" to the model number.
Be sure since-TR" is not part of the relay model number, it is not marked on the relay case.

Ratings

Coil: Single-side Stable Models

Rated voltage	Rated current	Coil resistance	Must operate voltage (V)	Must release voltage (V)	Max. voltage (V)	Power consumption (mW)
	(mA)	(Ω)	\% of rated voltage			
3 VDC	33.0	91	80\% max.	10\% min.	150\%	$\begin{gathered} \text { Approx. } \\ 100 \end{gathered}$
4.5 VDC	23.2	194				
5 VDC	21.1	237				
12 VDC	9.1	1,315				
24 VDC	4.6	5,220				

Note 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$.
Note 2. The operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$.
Note 3. The maximum voltage is the highest voltage that can be imposed on the relay coil instantaneously.
Coil: Single-winding Latching Models (G6KU-2F-Y, G6KU-2G-Y, G6KU-2P-Y)

Rated voltage	Rated current	Coil resistance	Must operate voltage (V)	Must release voltage (V)	Max. voltage (V)	Power consumption (mW)
	(mA)	(Ω)	\% of rated voltage			
3 VDC	33.0	91	75\% max.	75\% max.	150\%	$\begin{gathered} \text { Approx. } \\ 100 \end{gathered}$
4.5 VDC	23.2	194				
5 VDC	21.1	237				
12 VDC	9.1	1,315				
24 VDC	4.6	5,220				

Note 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$.
Note 2. The operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$.
Note 3. The maximum voltage is the highest voltage that can be imposed on the relay coil instantaneously

Contacts

Item	Load
Contact type	Rifurcated crossbar
Contact material	Ag (Au-Alloy contact)
Rated load	0.3 A at 125 VAC, 1 A at 30 VDC
Rated carry current	1 A
Max. switching voltage	125 VAC, 60 VDC
Max. switching current	1 A

Characteristics

Item Relay Function		Single-side stable models		Single-winding latching models
		G6K-2F, G6K-2G, G6K-2P	G6K-2F-Y, G6K-2G-Y, G6K-2P-Y	G6KU-2F-Y, G6KU-2G-Y, G6KU-2P-Y
Contact resistance *1		$100 \mathrm{~m} \Omega$ max.		
Operating (set) time		3 ms max .		
Release (reset) time		3 ms max .		
Minimum set/reset signal width		-		10 ms
Insulation resistance *2		$1,000 \mathrm{M} \Omega$ min. (at 500 VDC)		
Dielectric strength	Between coil and contacts	1,500 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min		
	Between contacts of different polarity	1,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min		
	Between contacts of the same polarity	$750 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min		
Impulse withstand voltage	Between coil and contacts	$1,500 \mathrm{~V}(10 \times 160 \mu \mathrm{~s})$	$2,500 \mathrm{~V}(2 \times 10 \mu \mathrm{~s}), 1,500 \mathrm{~V}(10 \times 160 \mu \mathrm{~s})$	
	Between contacts of different polarity	$1,500 \mathrm{~V}(10 \times 160 \mu \mathrm{~s})$		
	Between contacts of the same polarity			
Vibration resistance	Destruction	$10-55-10 \mathrm{~Hz}, 2.5 \mathrm{~mm}$ single amplitude (5 mm double amplitude) and 55 to $500 \mathrm{~Hz}, 300 \mathrm{~m} / \mathrm{s}^{2}$		
	Malfunction	$10-55-10 \mathrm{~Hz}, 1.65 \mathrm{~mm}$ single amplitude (3.3 mm double amplitude) and 55 to $500 \mathrm{~Hz}, 200 \mathrm{~m} / \mathrm{s}^{2}$		
Shock resistance	Destruction	$1,000 \mathrm{~m} / \mathrm{s}^{2}$		
	Malfunction	$750 \mathrm{~m} / \mathrm{s}^{2}$		
Durability	Mechanical	50,000,000 operations min. (at 36,000 operations/hour)		
	Electrical	100,000 operations min. (with a rated load at 1,800 operations/hour)		
Failure rate (P level) *3		$10 \mu \mathrm{~A}$ at 10 mVDC		
Ambient operating temperature		-40 to $70^{\circ} \mathrm{C}$ (with no icing or condensation)		
Ambient operating humidity		5\% to 85\%		
Weight		Approx. 0.7 g		

Note: The above values are initial values.
*1. The contact resistance was measured with 10 mA at 1 VDC with a voltage-drop method.
*2. The insulation resistance was measured with a 500 VDC megohmmeter applied to the same parts as those used for checking the dielectric strength.
3. This value was measured at a switching frequency of 120 operations $/ \mathrm{min}$ and the criterion of contact resistance is 50Ω. This value may vary depending on the switching frequency and operating environment. Always double-check relay suitability under actual operating conditions.

Engineering Data

-Maximum Switching Capacity

-Ambient Temperature vs.
Switching Current

OShock Malfunction

Conditions: Shock is applied in $\pm X, \pm Y$, and $\pm Z$ directions three times each with and without energizing the Relays to check the number of contact malfunctions.
Contact Reliability Test *1, *2
G6K-2G (F/P), G6K-2G (F/P)-Y

-Durability

-Ambient Temperature vs. Must Operate or Must Release Voltage G6K-2G (F/P), G6K-2G (F/P)-Y

- Electrical Durability (with Must Operate and Must Release Voltage) ${ }^{* 1}$ G6K-2G (F/P), G6K-2G (F/P)-Y

- Mutual Magnetic Interference G6K-2G (F/P), G6K-2G (F/P)-Y

-Ambient Temperature vs.
Maximum Coil Voltage

Note: The maximum coil voltage refers to the maximum value in a varying range of operating power voltage, not a continuous voltage.
-Ambient Temperature vs. Must Set or Must Reset Voltage G6KU-2G (F/P)-Y

*1. The test was conducted at an ambient temperature of $23^{\circ} \mathrm{C}$.
${ }^{*}$ 2. The contact resistance data are periodically measured reference values and are not values from each monitoring operation. Contact resistance values will vary according to the switching frequency and operating environment, so be sure to check operation under the actual operating conditions before use.

- External Magnetic Interference

G6K-2G (F/P), G6K-2G (F/P)-Y

-High-frequency Characteristics (Isolation) *1, *2
G6K-2G (F/P), G6K-2G (F/P)-Y

-Must Operate and Must Release Time Distribution *1
G6K-2G (F/P), G6K-2G (F/P)-Y

OHigh-frequency Characteristics
(Insertion Loss)) *1, *2
G6K-2G (F/P), G6K-2G (F/P)-Y

-Must Operate and Must Release Bounce Time Distribution *1 G6K-2G (F/P) , G6K-2G (F/P)-Y

-High-frequency Characteristics
(Return Loss) *1, *2
G6K-2G (F/P),G6K-2G (F/P)-Y

- Vibration Resistance G6K-2G (F/P), G6K-2G (F/P)-Y

*1. The tests were conducted at an ambient temperature of $23^{\circ} \mathrm{C}$.
*2. High-frequency characteristics depend on the PCB to which the Relay is mounted. Always check these characteristics including endurance in the actual machine before use.
-Single-side Stable G6K-2F

Mounting Dimensions (TOP VIEW)
Tolerance: $\pm 0.1 \mathrm{~mm}$

Note 1. Each value has a tolerance of $\pm 0.3 \mathrm{~mm}$
Note 2. The coplanarity of the terminals is 0.1 mm max

Terminal Arrangement/ Internal Connections (Bottom VIEW)

Mounting Dimensions (TOP VIEW) Tolerance: $\pm 0.1 \mathrm{~mm}$
 (TOP VIEW)

Note 1. Each value has a tolerance of $\pm 0.3 \mathrm{~mm}$.
Note 2. The coplanarity of the terminals is 0.1 mm max.
G6K-2P

PCB Mounting Holes (Bottom VIEW) Tolerance: $\pm 0.1 \mathrm{~mm}$

Note: Each value has a tolerance of $\pm 0.3 \mathrm{~mm}$.

G6K-2F-Y

G6K-2G-Y

G6K-2G

Mounting Dimensions (TOP VIEW)
Tolerance: $\pm 0.1 \mathrm{~mm}$

Note 1. Each value has a tolerance of $\pm 0.3 \mathrm{~mm}$
Note 2 . The coplanarity of the terminals is 0.1 mm max

Tolerance: $\pm 0.1 \mathrm{~mm}$

Note 1. Each value has a tolerance of $\pm 0.3 \mathrm{~mm}$.
Note 2 . The coplanarity of the terminals is 0.1 mm max.

G6K-2P-Y

PCB Mounting Holes (BOTTOM VIEW)
Tolerance: $\pm 0.1 \mathrm{~mm}$

Terminal Arrangement/ Internal Connections (TOP VIEW)

Terminal Arrangement/ Internal Connections (TOP VIEW)

-Single-winding Latching

G6KU-2F-Y

Mounting Dimensions (TOP VIEW)

Tolerance: $\pm 0.1 \mathrm{~mm}$

Terminal Arrangement/ internal Connections (TOP VIEW)

Note 1. Each value has a tolerance of $\pm 0.3 \mathrm{~mm}$.
Note 2. The coplanarity of the terminals is 0.1 mm max.

G6KU-2G-Y

Terminal Arrangement/ Internal Connections (TOP VIEW)

Note 1. Each value has a tolerance of $\pm 0.3 \mathrm{~mm}$.
Note 2. The coplanarity of the terminals is 0.1 mm max.

PCB Mounting Holes (BOTTOM VIEW) Tolerance: $\pm 0.1 \mathrm{~mm}$

Terminal Arrangement/ Internal Connections
 (BOTTOM VIEW)

Note: Each value has a tolerance of $\pm 0.3 \mathrm{~mm}$

■Tube Packing and Tape Packing

(1) Tube Packing

- Relays in tube packing are arranged so that the orientation mark of each Relay in on the left side. Fifty Relays are packed on one tube.
Be sure not to make mistakes in Relay orientation when mounting the Relay to the PCB.

Tube length: 520 mm (stopper not included)
No. of Relays per tube: 50 pcs
(2) Tape Packing (Surface Mounting Terminal Models)

- When ordering Relays in tape packing, add the prefix "-TR" to the model number, otherwise the Relays in tube packing will be provided.
Relays per Reel: 900 pcs
Minimum packing unit: 2 reels ($1,800 \mathrm{pcs}$)

1. Direction of Relay Insertion

Recommended Soldering Method

OIRS Method (for Surface-mounting Terminal Relays)
(1) IRS Method (Mounting Solder: Lead)

(The temperature profile indicates the temperature on the circuit board.)
(2) IRS Method (Mounting Solder: Lead-free)

[^0]2. Reel Dimensions

3. Carrier Tape Dimensions

G6K-2F, G6K-2F-Y, G6KU-2F-Y

G6K-2G, G6K-2G-Y, G6KU-2G-Y

- The thickness of cream solder to be applied should be within a range between 150 and $200 \mu \mathrm{~m}$ on OMRON's recommended PCB pattern.
- In order to perform correct soldering, it is recommended that the correct soldering conditions be maintained as shown below on the left side.

Correct Soldering Incorrect Soldering

Visually check that the Relay is properly soldered.

Approved Standards

UL recognized: \J UL1950 (File No. E41515)
CSA certified: © C22.2 No. 950 (File No. LR31928)

Contact form	Coil rating	Contact rating	Number of test operations
DPDT (2c)	G6K-2G(F/P): 3 to 24 VDC G6K(U)-2G(F/P)-Y: 3 to 24 VDC	$1 \mathrm{~A}, 30 \mathrm{VDC}$ at $40^{\circ} \mathrm{C}$ $0.5 \mathrm{~A}, 60 \mathrm{VDC}$ at $40^{\circ} \mathrm{C}$ $0.3 \mathrm{~A}, 125 \mathrm{VAC}$ at $40^{\circ} \mathrm{C}$	6,000

- Precautions

-Please refer to "PCB Relays Common Precautions" for correct use.

Correct Use

OLong-term Continuously ON Contacts

- Using the Relay in a circuit where the Relay will be ON continuously for long periods (without switching) can lead to unstable contacts because the heat generated by the coil itself will affect the insulation, causing a film to develop on the contact surfaces. We recommend using a latching relay (magnetic-holding relay) in this kind of circuit. If a single-side stable model must be used in this kind of circuit, we recommend using a fail-safe circuit design that provides protection against contact failure or coil burnout.

-Relay Handling

- Use the Relay as soon as possible after opening the moistureproof package. If the Relay is left for a long time after opening the moisture-proof package, the appearance may suffer and seal failure may occur after the solder mounting process. To store the Relay after opening the moisture-proof package, place it into the original package and sealed the package with adhesive tape.
- When washing the product after soldering the Relay to a PCB, use a water-based solvent or alcohol-based solvent, and keep the solvent temperature to less than $40^{\circ} \mathrm{C}$. Do not put the Relay in a cold cleaning bath immediately after soldering.

-Claw Securing Force During Automatic Mounting

- During automatic insertion of Relays, make sure to set the securing force of each claw to the following so that the Relays characteristics will be maintained.

Direction A: 1.96 N max. Direction B: 4.90 N max. Direction C: 1.96 N max.
-Environmental Conditions During Operation, Storage, and Transportation

- Protect the Relay from direct sunlight and keep the Relay under normal temperature, humidity, and pressure.

-Latching Relay Mounting

- Make sure that the vibration or shock that is generated from other devices, such as relays in operation, on the same panel and imposed on the Latching Relay does not exceed the rated value, otherwise the Latching Relay that has been set may be reset or vice versa. The Latching Relay is reset before shipping. If excessive vibration or shock is imposed, however, the Latching Relay may be set accidentally. Be sure to apply a reset signal before use.

OMaximum Allowable Voltage

- The maximum allowable voltage of the coil can be obtained from the coil temperature increase and the heat-resisting temperature of coil insulating sheath material. (Exceeding the heat-resisting temperature may result in burning or short-circuiting.) The maximum allowable voltage also involves important restrictions which include the following:
- Must not cause thermal changes in or deterioration of the insulating material.
- Must not cause damage to other control devices.
- Must not cause any harmful effect on people.
- Must not cause fire.

Therefore, be sure to use the maximum allowable voltage beyond the value specified in the catalog.

- As a rule, the rated voltage must be applied to the coil. A voltage exceeding the rated value, however, can be applied to the coil provided that the voltage is less than the maximum allowable voltage. It must be noted that continuous voltage application to the coil will cause a coil temperature increase thus affecting characteristics such as electrical life and resulting in the deterioration of coil insulation.

-Coating

- The Relay mounted on the PCB may be coated or washed but do not apply silicone coating or detergent containing silicone, otherwise the silicone coating or detergent may remain on the surface of the Relay.

OPCB Mounting

- If two or more Relays are closely mounted with the long sides of the Relays facing each other and soldering is performed with infrared radiation, the solder may not be properly exposed to the infrared rays. Be sure to keep the proper distance between adjacent Relays as shown below.

G6K-2G

G6K-2F

- Two or more Relays may be closely mounted with the short sides of the Relays facing each other.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Low Signal Relays - PCB category:
Click to view products by Omron manufacturer:

Other Similar products are found below :
LZN4-US-DC12 LZNQ4-US-DC24 LZNQ4-US-DC48 6-1617347-5 6-1617353-3 6-1617529-6 M39016/27-030M 67RPCX-3 D3493L 7-1393813-3 MF-11AM-24 MF1201N12 MF-17A-24 FBR244D024/02CS 80.010.4522.1 8-1393813-6 8-1617347-2 FL-4036 FLH-11D-6 831A7 MMS124 FW1201S39 FW1210S02 FW1521S01 FW5A11116S01 FW5A11145G01 9-1617582-5 G6AK-2-H-DC5 G6E-184P-ST-US-DC48 G6G234CDC24 A07A939BZ1-0388 PZ-2A2420 HB1-DC9V R10-14A10-240 R10-14D10-12 R10-5A10-120F R10-E2468-1 R10-E4Z2-V700 R10-T1L2N-115V R40-E1Z4-V50 R40-E3Z4-V200 R50-E2Y2-24 HFW11130K01 HFW1131B00 HFW1201W200 RA30511121 RA-5W-K RB06H2C12 REL-MR-60DC/21AU RG2ET-L-12V

[^0]: (The temperature profile indicates the temperature on the PCB.)

