Surface-mounting Relay

Compact, Industry-Standard 2-pole relay, designed to switch 2A Signal Loads.

- Long terminals for ideal for soldering and mounting reliability. (Surface mounting terminal models)
- Space-saving inside-L terminal. (Surface mounting terminal models)
- Unique terminal structure, designed to withstand IRS soldering processes. (Surface mounting terminal models)
- High dielectric strength (2,000 VAC) and impulse withstand voltage between coil and contacts ($2,500 \mathrm{~V}, 2 \times 10 \mu \mathrm{~s}$: Telcordia requirements).
- Ultra-miniature at $9.4 \mathrm{~mm}(\mathrm{H}) \times 7.5 \mathrm{~mm}(\mathrm{~W}) \times 15 \mathrm{~mm}(\mathrm{~L})$.
- Models available with BSI (EN62368-1) supplementary insulation certification. (-Y type)

RoHS Compliant

Model Number Legend
G6S $\frac{\square-\square}{1} \frac{\square}{2}-\frac{\square}{4}$

1. Relay Function

None : Single-side stable
U : Single-winding latching
K : Double-winding latching
2. Number of poles/ Contact form
2: 2-pole/DPDT (2c)

3. Terminal Shape

None: PCB terminals
F : Outside-L surface mounting terminals
G : Inside-L surface mounting terminals
4. Approved Standards

None : UL, CSA
Y : UL, CSA, BSI (EN62368-1)

Application Examples

- Telecommunication equipment
- Measurement devices
- Office automation machines
- Audio-visual products.
- Security equipment
- Building automation equipment
- Industrial equipment
- Amusement equipment
- Home appliances

Ordering Information

Surface mounting terminal standard models

Note 1. When ordering, add the rated coil voltage to the model number.
Example: G6S-2F DC3
-PCB Terminal Standard Models

Enclosure rating	Relay Function	Single-side stable		Single-winding latching		Double-winding latching		Minimum packing unit
	Contact form	Model	Rated coil voltage	Model	Rated coil voltage	Model	Rated coil voltage	
Fully sealed	DPDT (2c)	G6S-2	3 VDC	G6SU-2	3 VDC	G6SK-2	3 VDC	$50 \mathrm{pcs} /$ tube
			4.5 VDC		4.5 VDC		4.5 VDC	
			5 VDC		5 VDC		5 VDC	
			12 VDC		12 VDC		12 VDC	
			24 VDC		24 VDC		24 VDC	
		G6S-2-Y	5 VDC	G6SU-2-Y	5 VDC	-	-	
			12 VDC		12 VDC			
			24 VDC		24 VDC			

Note 1. When ordering, add the rated coil voltage to the model number.
Example: G6S-2 DC3
— Rated coil voltage
However, the notation of the coil voltage on the product case as well as on the packing will be marked as $\square \square$ VDC.
Note 2.PCB terminal standard types do not require moisture proof packaging and therefore shipped in non-moisture-proof package.

Ratings

OSingle-side Stable Model

Model	Item Rated voltage		Rated current (mA)	Coil resistance (Ω)	Must operate voltage (V)	Must release voltage (V)	Max. voltage (V)	Power consumption (mW)
$\begin{aligned} & \text { G6S-2 } \\ & \text { G6S-2F } \\ & \text { G6S-2G } \end{aligned}$	DC	3	46.7	64.3	75\% max.	10\% min.	$\begin{gathered} 200 \% \\ \text { (at } 23^{\circ} \mathrm{C} \text {) } \end{gathered}$	Approx. 140
		4.5	31	145				
		5	28.1	178				
		12	11.7	1,028				
		24	8.3	2,880			$\begin{gathered} 170 \% \\ \left(\text { at } 23^{\circ} \mathrm{C}\right. \text {) } \end{gathered}$	Approx. 200
$\begin{aligned} & \text { G6S-2-Y } \\ & \text { G6S-2F-Y } \\ & \text { G6S-2G-Y } \end{aligned}$	DC	5	40	125	75\% max.	10\% min.	$\begin{gathered} 170 \% \\ \text { (at } 23^{\circ} \mathrm{C} \text {) } \end{gathered}$	Approx. 200
		12	16.7	720				
		24	9.6	2,504				Approx. 230

-Contacts

Item Load	Resistive load
Contact type	Bifurcated crossbar
Contact material	Ag (Au-Alloy)
Rated load	0.5 A at 125 VAC; 2 A at 30 VDC
Rated carry current	2 A
Max. switching voltage	250 VAC, 220 VDC
Max. switching current	2 A

Note 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$.
2. Operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$.
3. The maximum voltage is the highest voltage that can be imposed on the relay coil.

-Single-winding Latching Model

Model	Item Rated voltage		Rated current (mA)	Coil resistance (Ω)	Must operate voltage (V)	Must release voltage (V)	Max. voltage (V)	Power consumption (mW)
$\begin{aligned} & \text { G6SU-2 } \\ & \text { G6SU-2F } \\ & \text { G6SU-2G } \end{aligned}$	DC	3	33.3	90	75\% max.	75\% max.	$\begin{gathered} 180 \% \\ \text { (at } 23^{\circ} \mathrm{C} \text {) } \end{gathered}$	Approx. 100
		4.5	22.2	203				
		5	20	250				
		12	8.3	1,440				
		24	6.3	3,840				Approx. 150
$\begin{aligned} & \text { G6SU-2-Y } \\ & \text { G6SU-2F-Y } \\ & \text { G6SU-2G-Y } \end{aligned}$	DC	5	28.1	178	75\% max.	75\% max.	$\begin{gathered} 200 \% \\ \left(\text { at } 23^{\circ} \mathrm{C}\right. \text {) } \end{gathered}$	Approx. 140
		12	11.7	1,028				
		24	5.8	4,114				

Note 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$.
2. Operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$.
3. The maximum voltage is the highest voltage that can be imposed on the relay coil.

-Double-winding Latching Model

Model	Rated voltage		Rated current (mA)	Coil resistance (Ω)	Must operate voltage (V)	Must release voltage (V)	Max. voltage (V)	Power consumption (mW)
$\begin{aligned} & \text { G6SK-2 } \\ & \text { G6SK-2F } \\ & \text { G6SK-2G } \end{aligned}$	DC	3	66.6	45	75\% max.	75\% max.	$\begin{gathered} 170 \% \\ \text { (at } 23^{\circ} \mathrm{C} \text {) } \end{gathered}$	Approx. 200
		4.5	44.4	101				
		5	40	125				
		12	16.7	720				
		24	12.5	1,920			$\begin{gathered} 140 \% \\ \text { (at } 23^{\circ} \mathrm{C} \text {) } \\ \hline \end{gathered}$	Approx. 300

Note 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$.
2. Operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$.
3. The maximum voltage is the highest voltage that can be imposed on the relay coil.

Characteristics

Item Relay Function		Single-side Stable G6S-2, G6S-2F, G6S-2G	Single-winding Latching G6SU-2, G6SU-2F, G6SU-2G	Double-winding Latching G6SK-2, G6SK-2F, G6SK-2G	$\begin{aligned} & \text { Single-side Stable } \\ & \text { G6S-2F-Y, G6S-2G-Y, } \\ & \text { G6S-2-Y } \end{aligned}$	$\begin{gathered} \text { Single-winding Latching } \\ \text { G6SU-2-Y, } \\ \text { G6SU-2F-Y, } \\ \text { G6SU-2G-Y } \\ \hline \end{gathered}$
Contact resistance *1		$75 \mathrm{~m} \Omega$ max.				
Operate (set) time		4 ms max.				
Release (reset) time		4 ms max.				
Min. set/reset pulse width		10 ms			-	10 ms
Insulation resistance *2		1,000 M 2 min. (at 500 VDC)				
Dielectric strength	Between coil and contacts	2,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min		$\begin{aligned} & 1,000 \text { VAC, } 50 / 60 \mathrm{~Hz} \\ & \text { for } 1 \text { min } \end{aligned}$	2,000 VAC, 50/60 Hz for 1 min	
	Between contacts of different polarity	1,500 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min				
	Between contacts of the same polarity	1,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min				
	Between set and reset coil			$\begin{aligned} & 500 \text { VAC, } 50 / 60 \mathrm{~Hz} \\ & \text { for } 1 \text { min } \end{aligned}$		
Insulation distance	Between coil and contacts	Clearance: 1 mm , Creepage: 1.5 mm			Clearance: 2 mm , Creepage: 2 mm	
Impulse withstand voltage	Between coil and contacts	$2,500 \mathrm{~V}(2 \times 10 \mu \mathrm{~s}) ; 1,500 \mathrm{~V}(10 \times 160 \mu \mathrm{~s})$		$\begin{gathered} 1,500 \mathrm{~V}(10 \times 160 \\ \mu \mathrm{s}) \\ \hline \end{gathered}$	$\begin{gathered} 2,500 \mathrm{~V}(2 \times 10 \mu \mathrm{~s}) ; \\ 1,500 \mathrm{~V}(10 \times 160 \mu \mathrm{~s}) \\ \hline \end{gathered}$	
	Between contacts of different polarity	$2,500 \mathrm{~V}(2 \times 10 \mu \mathrm{~s}) ; 1,500 \mathrm{~V}(10 \times 160 \mu \mathrm{~s})$				
	Between contacts of the same polarity	$1,500 \mathrm{~V}(10 \times 160 \mu \mathrm{~s})$				
Vibration resistance	Destruction	10 to 55 to $10 \mathrm{~Hz}, 2.5 \mathrm{~mm}$ single amplitude (5 mm double amplitude)				
	Malfunction	10 to 55 to $10 \mathrm{~Hz}, 1.65 \mathrm{~mm}$ single amplitude (3.3 mm double amplitude)				
Shock resistance	Destruction	$1,000 \mathrm{~m} / \mathrm{s}^{2}$				
	Malfunction	$750 \mathrm{~m} / \mathrm{s}^{2}$				
Durability	Mechanical	100,000,000 operations min. (at 36,000 operations/hr)				
	Electrical	100,000 operations min. for AC (at 1,800 operations/h with rated load) 100,000 operations min. for DC (at 1,200 operations/h with rated load)				
Failure rate (P level) (reference value) *3		$10 \mu \mathrm{~A}$ at 10 m VDC				
Ambient operating temperature		$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (with no icing or condensation), and $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing or condensation) only for double-winding latching 24 VDC and -Y type 24 VDC				
Ambient operating humidity		5% to 85%				
Weight		Approx. 2 g				

Note: The above values are initial values.

1. The contact resistance was measured with 10 mA at 1 VDC with a voltage drop method.
2. The insulation resistance was measured with a 500 VDC megohmmeter applied to the same parts as those used for checking the dielectric strength (except between the set and reset coil).
*3. This value was measured at a switching frequency of 120 operations $/ \mathrm{min}$ and the criterion of contact resistance is 50Ω. This value may vary, depending on switching frequency, operating conditions, expected reliability level of the relay, etc. It is always recommended to double-check relay suitability under actual load conditions.

Engineering Data

-Maximum Switching
 Capacity

-Ambient Temperature vs. Switching Current (Single-side Stable)

-Durability G6S-2F(G)

-Ambient Temperature vs. Maximum Voltage (Single-side Stable)

-Ambient Temperature vs. Maximum Voltage (Latching)

Note: "Maximum voltage" is the maximum voltage that can be applied to the Relay coil.
-Ambient Temperature vs. Switching Current (Latching)

-Ambient Temperature
vs. Must Operate or Must

Release Voltage
G6S-2F(G)

-Shock Malfunction G6S-2F(G)

Conditions: Shock is applied in $\pm \mathrm{X}, \pm \mathrm{Y}$, and \pm Z directions three times each with and without energizing the Relays to check the number of contact malfunctions.

- Electrical Endurance

 (with Must Operate and Must Release Voltage) *1 G6S-2F(G)
-Contact Reliability Test (Contact Resistance) *1, *2 G6S-2F(G)

-Mutual Magnetic Interference
G6S-2F(G)

-Mutual Magnetic
Interference
G6S-2F(G)

-Electrical Endurance (Contact Resistance) *1 G6S-2F(G)

-Electrical Endurance (with Must Operate and Must Release Voltage) *1 G6S-2F(G)

- External Magnetic Interference
G6S-2F(G) (Average value)

OHigh-frequency
Characteristics
(Isolation) *1, *2
G6S-2F(G) (Average value (initial))

-Must Operate and Must Release Time Distribution *1 G6S-2F(G)

(Average value)

OHigh-frequency Characteristics
(Insertion Loss) *1, *3
G6S-2F(G) (Average value (initial))

-Electrical Endurance (Contact Resistance) *1 G6S-2F(G)

-Distribution of Bounce Time *1 G6S-2F(G)

(Average value)

OHigh-frequency Characteristics
(Return Loss, V.SWR) *1, *3 G6S-2F(G) (Average value (initial))

*1. The tests were conducted at an ambient temperature of $23^{\circ} \mathrm{C}$.
*2. The contact resistance data are periodically measured reference values and are not values from each monitoring operation. Contact resistance values will vary according to the switching frequency and operating environment, so be sure to check operation under the actual operating conditions before use
*3. High-frequency characteristics depend on the PCB to which the Relay is mounted. Always check these characteristics, including durability, in the actual machine before use.

Dimensions
Single-side Stable
G6S-2F
G6S-2F-Y

Terminal Arrangement/ Internal Connections (Top View)

G6S-2G
G6S-2G-Y

Note 1. Each value has a tolerance of $\pm 0.3 \mathrm{~mm}$. Note 2 . The coplanarity of the terminals is 0.1 mm max.

Tolerance: $\pm 0.1 \mathrm{~mm}$

G6S-2
G6S-2-Y

PCB Mounting Holes
(Bottom View)

Mounting Dimensions (Top View)

Note: Each value has a tolerance of $\pm 0.3 \mathrm{~mm} .^{2.54}$

Mounting Dimensions (Top View)
Tolerance: $\pm 0.1 \mathrm{~mm}$

Terminal Arrangement/
Internal Connections
(Top View)
Orientation mark

Terminal Arrangement/
Internal Connections
(Bottom View)

Single-winding Latching
G6SU-2F

G6SU-2G

G6SU-2G-Y

Note 1. Each value has a tolerance of $\pm 0.3 \mathrm{~mm}$.
Note 2.The coplanarity of the terminals is 0.1 mm max.

G6SU-2
G6SU-2-Y

Terminal Arrangement/
Internal Connections
(Top View)
Orientation mark
 polarity of the Relay.

Terminal Arrangement/
Internal Connections
(Top View)
Orientation mark

Terminal Arrangement/ Internal Connections
(Bottom View)
Orientation mark

Note: Each value has a tolerance of $\pm 0.3 \mathrm{~mm}$.

Double-winding Latching

G6SK-2F

G6SK-2G

Tolerance: $\pm 0.1 \mathrm{~mm}$
Terminal Arrangement/ Internal Connections (Top View)

Note 1. Each value has a tolerance of $\pm 0.3 \mathrm{~mm}$.
Note 2.The coplanarity of the terminals is 0.1 mm max.

Mounting Dimensions (Top View)
Tolerance: $\pm 0.1 \mathrm{~mm}$

Terminal Arrangement Internal Connections (Top View)
Orientation mark

Note: Check carefully the coil polarity of the Relay.

Note: Check carefully the coil polarity of the Relay

Terminal Arrangement/ Internal Connections (Bottom View)

G6SK-2

 polarity of the Relay

Note: Each value has a tolerance of $\pm 0.3 \mathrm{~mm}$.

Tube Packing and Tape Packing

Surface mounting terminal (SMT) standard models are shipped in moisture-proof package, and PCB terminal standard types do not require moisture proof packaging and therefore shipped in non-moisture-proof package.
Please refer to "Correct Use" for handling after opening moisture-proof packaging for Surface mounting terminal (SMT) models.

(1) Tube Packing

- Relays in tube packing are arranged so that the orientation mark of each Relay in on the left side.
Be sure not to make mistakes in Relay orientation when mounting the Relay to the PCB.

Tube length: 772 mm (stopper not included)
No. of Relays per tube: 50 pcs
(2) Tape Packing (Surface Mounting Terminal Models)

- When ordering Relays in tape packing, add the prefix "-TR" to the model number, otherwise the Relays in tube packing will be provided.
Relays per Reel: 400 pcs
Minimum packing unit: 2 reels (800 pcs)

1. Direction of Relay Insertion

2. Reel Dimensions

3. Carrie Tape Dimensions

 G6S-2F(-Y), G6SU-2F, G6SK-2F

G6S-2G(-Y), G6SU-2G, G6SK-2G

Recommended Soldering Method

(1) IRS Method (Mounting Solder: Lead)

(The temperature profile indicates the temperature on the circuit board surface.)

(2) IRS Method (Mounting Solder: Lead-free)

- The thickness of cream solder to be applied should be within a range between 150 and $200 \mu \mathrm{~m}$ on OMRON's recommended PCB pattern.
- In order to perform correct soldering, it is recommended that the correct soldering conditions be maintained as shown below on the left side.
Correct Soldering Incorrect Soldering

Visually check that the Relay is properly soldered.
(The temperature profile indicates the temperature on the PCB.)

Approved Standards

UL recognized: \】】 (File No. E41515)
CSA certified: © (File No. LR31928)

Contact form	Coil ratings	Contact ratings	Number of test operations
DPDT (2c)	3 to 24 VDC	$3 \mathrm{~A}, 30 \mathrm{VDC}$ at $40^{\circ} \mathrm{C}$ $0.3 \mathrm{~A}, 110 \mathrm{VDC}$ at $40^{\circ} \mathrm{C}$ $0.5 \mathrm{~A}, 125 \mathrm{VAC}$ at $40^{\circ} \mathrm{C}$	6,000

BSI (EN62368-1) (File No.VC657351)
(-Y type)

Contact form	Isolation category	Voltage
DPDT (2c)	Supplementary Insulation	250 VAC

DPDT (2c)	Supplementary Insulation	250 VAC

Precautions

- Please refer to "PCB Relays Common Precautions" for correct use.

Correct Use

- Long-term Continuously ON Contacts
- Using the Relay in a circuit where the Relay will be ON continuously for long periods (without switching) can lead to unstable contacts because the heat generated by the coil itself will affect the insulation, causing a film to develop on the contact surfaces. We recommend using a latching relay (magnetic-holding relay) in this kind of circuit. If a single-side stable model must be used in this kind of circuit, we recommend using a fail-safe circuit design that provides protection against contact failure or coil burnout.

- Relay Handling

- Use the Relay as soon as possible after opening the moistureproof package. (As a guideline, use the Relay within one week at $30^{\circ} \mathrm{C}$ or less and $60 \% \mathrm{RH}$ or less.) If the Relay is left for a long time after opening the moisture-proof package, the appearance may suffer and seal failure may occur after the solder mounting process. To store the Relay after opening the moisture-proof package, place it into the original package and sealed the package with adhesive tape.
- When washing the product after soldering the Relay to a PCB, use a water-based solvent or alcohol-based solvent, and keep the solvent temperature to less than $40^{\circ} \mathrm{C}$. Do not put the Relay in a cold cleaning bath immediately after soldering.
- Claw Securing Force During Automatic Mounting
- During automatic insertion of Relays, be sure to set the securing force of each claw to the following so that the Relay's characteristics will be maintained.

- Consult your OMRON representative before using the product under conditions which are not described in the manual or applying the product to nuclear control systems, railroad systems, aviation systems, vehicles, combustion systems, medical equipment, amusement machines, safety equipment, and other systems or equipment that may have a serious influence on lives and property if used improperly. Make sure that the ratings and performance characteristics of the product provide a margin of safety for the system or equipment, and be sure to provide the system or equipment with double safety mechanisms.

Note: Do not use this document to operate the Unit.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Low Signal Relays - PCB category:
Click to view products by Omron manufacturer:

Other Similar products are found below :
6-1393813-4 6-1462039-0 6-1617529-6 617-12 67RPCX-3 7-1393809-0 7-1393813-3 7556072001 80.010.4522.1 FTR-B4GA006Z FW1210S02 9-1393813-6 9-1617519-3 9-1617582-5 G6AK-2-H-DC5 A-1.5W-K DF2E-L2-DC3V DS1EM24J DS1EM5J DS1ES5J DS4E-M-DC5V-H48 EC2-4.5TNJ EC2-9NJ B07B939BC1-0868 1608043-4 1617076-5 1617117-3 1617137-2 1617518-5 1617560 HMB1130K00 HMB1131S06 HMS1119S01 HMS1131S10 HMS1201S03 HMS1201S87 HMS1205S02 2-1393807-6 2-1617071-2 2-1617594-1 JMGSC-5LW K6-PS KHS-17D11-110 9-1393761-0 9-1617352-3 9-1617583-1 276XAXH-9D 1617072-3 1617075-4 1617109$\underline{2}$

