Surface-mounting, double-pole signal switching Relay, with terminals jutting out from both sides of the case

- Long terminals for ideal for soldering and mounting reliability. (Surface mounting terminal models)
- Space-saving inside-L terminal. (Surface mounting terminal models)
- Unique terminal construction allowing the terminal temperature to rise easily, ideal for soldering reliability. (Surface mounting terminal models)
- High dielectric strength (2,000 VAC) and impulse withstand voltage between coil and contacts ($2,500 \mathrm{~V}, 2 \times 10 \mu \mathrm{~s}$: Telcordia requirements).

- High sensitivity with 140 mW rated power consumption.
- Ultra-miniature at $9.4 \mathrm{~mm}(\mathrm{H}) \times 7.5 \mathrm{~mm}(\mathrm{~W}) \times 15 \mathrm{~mm}(\mathrm{~L})$.
- Applicable to IRS using heat-resistant material.
- Standard model conforms to UL/CSA standards.
- Model with PCB terminals (G6S $\square-2$) is added to this series.
- EN60950 certified type is available. (-Y type)

RoHS Compliant

Model Number Legend
G6S $\frac{\square-\square}{1} \frac{\square}{2}-\frac{\square}{4}$

1. Relay Function

None : Single-side stable
U : Single-winding latching
K : Double-winding latching
2. Number of poles/ Contact form

2: 2-pole/DPDT (2c)

3. Terminal Shape

None : PCB terminals
F : Outside-L surface mounting terminals
G : Inside-L surface mounting terminals
4. Approved Standards

None : UL/CSA
Y : EN60950 certified

Application Examples

- Telecommunication equipment
- Measurement devices
- Office automation machines
- Audio-visual products.

Ordering Information

-Surface mounting terminal standard models (UL, CSA certified)

Enclosure rating	Relay Function	Single-side stable		Single-winding latching		Double-winding latching		Minimum packing unit	Minimum ordering unit (tape packing)
	Contact form	Model	Rated coil voltage	Model	Rated coil voltage	Model	Rated coil voltage		
Fully sealed	DPDT (2c)	$\begin{aligned} & \text { G6S-2F } \\ & \text { G6S-2G } \end{aligned}$	3 VDC	$\begin{aligned} & \text { G6SU-2F } \\ & \text { G6SU-2G } \end{aligned}$	3 VDC	$\begin{aligned} & \text { G6SK-2F } \\ & \text { G6SK-2G } \end{aligned}$	3 VDC	50 pcs/tube ($400 \mathrm{pcs} /$ reel)	800 pcs/ 2 reels
			4.5 VDC		4.5 VDC		4.5 VDC		
			5 VDC		5 VDC		5 VDC		
			12 VDC		12 VDC		12 VDC		
			24 VDC		24 VDC		24 VDC		

-Surface mounting terminal standard models (EN60950 certified)

Enclosure rating	Relay Function	Single-side stable		Minimum packing unit	Minimum ordering unit (tape packing)
	Contact form	Model	Rated coil voltage		
Fully sealed	DPDT (2c)	$\begin{aligned} & \text { G6S-2F-Y } \\ & \text { G6S-2G-Y } \end{aligned}$	5 VDC	$50 \mathrm{pcs} /$ tube ($400 \mathrm{pcs} /$ reel)	800 pcs/ 2 reels
			12 VDC		
			24 VDC		

[^0]-PCB Terminal Standard Models (UL, CSA certified)

Enclosure rating	Relay Function	Single-side stable		Single-winding latching		Double-winding latching		Minimum packing unit
	Contact form	Model	Rated coil voltage	Model	Rated coil voltage	Model	Rated coil voltage	
Fully sealed	DPDT (2c)	G6S-2	3 VDC	G6SU-2	3 VDC	G6SK-2	3 VDC	$50 \mathrm{pcs} /$ tube
			4.5 VDC		4.5 VDC		4.5 VDC	
			5 VDC		5 VDC		5 VDC	
			12 VDC		12 VDC		12 VDC	
			24 VDC		24 VDC		24 VDC	

-PCB Terminal Standard Models (EN60950 certified)

Enclosure rating	Relay Function	Single-side stable		Minimum packing unit	Note: When ordering, add the rated coil voltage to the model number. Example: G6S-2 3 VDC\qquad Rated coil voltage
	Contact form	Model	Rated coil voltage		
Fully sealed	DPDT (2c)	G6S-2-Y	5 VDC	$50 \mathrm{pcs} /$ tube	
			12 VDC		
			24 VDC		

Ratings

-Single-side Stable Model (G6S-2, G6S-2F, G6S-2G)

Item	Rated current	Coil resistance	Must operate voltage (V)	Must release voltage (V)	Max. voltage (V)	Power consumption (mW)
Rated voltage	(mA)	(Ω)	\% of rated voltage			
3 VDC	46.7	64.3	75\% max.	10\% min.	$\begin{gathered} 200 \% \\ \text { (at } 23^{\circ} \mathrm{C} \text {) } \end{gathered}$	Approx. 140
4.5 VDC	31.0	145				
5 VDC	28.1	178				
12 VDC	11.7	1,028				
24 VDC	8.3	2,880			$\begin{gathered} 170 \% \\ \text { (at } 23^{\circ} \mathrm{C} \text {) } \end{gathered}$	Approx. 200

Note 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$.
2. Operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$.
3. The maximum voltage is the highest voltage that can be imposed on the relay coil.

- Contacts

Item Load	Resistive load
Contact type	Bifurcated crossbar
Contact material	Ag (Au-Alloy)
Rated load	0.5 A at 125 VAC; 2 A at 30 VDC
Rated carry current	2 A
Max. switching voltage	250 VAC, 220 VDC
Max. switching current	2 A

-Single-winding Latching Model (G6SU-2, G6SU-2F, G6SU-2G)

Item	Rated current	Coil resistance	Must set voltage (V)	Must reset voltage (V)	Max. voltage (V)	Power consumption (mW)
Rated voltage	(mA)	(Ω)	\% of rated voltage			
3 VDC	33.3	90	75\% max.	75\% max.	$\begin{gathered} 180 \% \\ \left(\text { at } 23^{\circ} \mathrm{C}\right) \end{gathered}$	Approx. 100
4.5 VDC	22.2	203				
5 VDC	20	250				
12 VDC	8.3	1,440				
24 VDC	6.3	1,152				Approx. 150

Note 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$. 2. Operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$.
3. The maximum voltage is the highest voltage that can be imposed on the relay coil.

-Double-winding Latching Model (G6SK-2, G6SK-2F, G6SK-2G)

Item	Rated current	Coil resistance	Must set voltage (V)	Must reset voltage (V)	Max. voltage (V)	Power consumption (mW)
Rated voltage	(mA)	(Ω)	\% of rated voltage			
3 VDC	66.6	45	75\% max.	75\% max.	$\begin{gathered} 170 \% \\ \text { (at } 23^{\circ} \mathrm{C} \text {) } \end{gathered}$	Approx. 200
4.5 VDC	44.4	101				
5 VDC	40	125				
12 VDC	16.7	720				
24 VDC	12.5	1,920			$\begin{gathered} 140 \% \\ \text { (at } 23^{\circ} \mathrm{C} \text {) } \end{gathered}$	Approx. 300

Note 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$. 2. Operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$.
3. The maximum voltage is the highest voltage that can be imposed on the relay coil.
-EN60950 certified Model (G6S-2F-Y, G6S-2G-Y, G6S-2-Y)

	Rated current	Coil resistance	Must operate voltage (V)	Must release voltage (V)	Max. voltage (V)	Power consumption (mW)
Rated voltage	(mA)	(Ω)	\% of rated voltage			
5 VDC	40	125	75\% max.	10\% min.	$\begin{gathered} 170 \% \\ \left(\text { at } 23^{\circ} \mathrm{C}\right. \text {) } \end{gathered}$	Approx. 200
12 VDC	16.7	720				
24 VDC	9.6	2,504				Approx. 230

Note 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$.
2. Operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$.
3. The maximum voltage is the highest voltage that can be imposed on the relay coil.

■Characteristics

Item Relay Function		Single-side Stable G6S-2, G6S-2F, G6S-2G	$\begin{aligned} & \text { Single-winding Latching } \\ & \text { G6SU-2, G6SU-2F, } \\ & \text { G6SU-2G } \end{aligned}$	Double-winding Latching G6SK-2, G6SK-2F, G6SK-2G	$\begin{aligned} & \text { EN60950 certified } \\ & \text { G6S-2F-Y, G6S-2G-Y, } \\ & \text { G6S-2-Y } \end{aligned}$
Contact resistance *1		$75 \mathrm{~m} \Omega$ max.			
Operate (set) time		4 ms max.			
Release (reset) time		4 ms max.			
Min. set/reset pulse width		-	10 ms		-
Insulation resistance *2		$1,000 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC)			
Dielectric strength	Between coil and contacts	2,000 VAC, 50/60 Hz for 1 min		1,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min	$2,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1
	Between contacts of different polarity	1,500 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min			
	Between contacts of the same polarity	1,500 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min			
	Between set and reset coil	-		500 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min	-
Impulse withstand voltage	Between coil and contacts	$2,500 \mathrm{~V}(2 \times 10 \mu \mathrm{~s}) ; 1,500 \mathrm{~V}(10 \times 160 \mu \mathrm{~s})$		$1,500 \mathrm{~V}(10 \times 160 \mu \mathrm{~s})$	$\begin{gathered} \hline 2,500 \mathrm{~V}(2 \times 10 \mu \mathrm{~s}) ; \\ 1,500 \mathrm{~V}(10 \times 160 \mu \mathrm{~s}) \end{gathered}$
	Between contacts of different polarity	$2,500 \mathrm{~V}(2 \times 10 \mu \mathrm{~s}) ; 1,500 \mathrm{~V}(10 \times 160 \mu \mathrm{~s})$			
	Between contacts of the same polarity	$1,500 \mathrm{~V}(10 \times 160 \mu \mathrm{~s})$			
Vibration resistance	Destruction	10 to 55 to $10 \mathrm{~Hz}, 2.5 \mathrm{~mm}$ single amplitude (5 mm double amplitude)			
	Malfunction	10 to 55 to $10 \mathrm{~Hz}, 1.65 \mathrm{~mm}$ single amplitude (3.3 mm double amplitude)			
Shock resistance	Destruction	$1,000 \mathrm{~m} / \mathrm{s}^{2}$			
	Malfunction	$750 \mathrm{~m} / \mathrm{s}^{2}$			
Durability	Mechanical	100,000,000 operations min. (at 36,000 operations/hr)			
	Electrical	100,000 operations min. for AC (at 1,800 operations/h with rated load) 100,000 operations min. for DC (at 1,200 operations/h with rated load)			
Failure rate (P level) (reference value) *3		$10 \mu \mathrm{~A}$ at 10 m VDC			
Ambient operating temperature		$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (with no icing or condensation), and $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing or condensation) only for double-winding latching 24 VDC type and EN60950 standard approved 24 VDC type			
Ambient operating humidity		5\% to 85\%			
Weight		Approx. 2 g			

Note: The above values are initial values.
*1. The contact resistance was measured with 10 mA at 1 VDC with a voltage drop method.
*2. The insulation resistance was measured with a 500 VDC megohmmeter applied to the same parts as those used for checking the dielectric strength (except between the set and reset coil).
*3. This value was measured at a switching frequency of 120 operations/min. This value may vary, depending on switching frequency, operating conditions, expected reliability level of the relay, etc. It is always recommended to double-check relay suitability under actual load conditions.

Engineering Data

-Maximum Switching
Capacity

-Ambient Temperature
vs. Switching Current (Single-side Stable)

Note: "Maximum voltage" is the maximum voltage that can be applied to the Relay coil.
-Ambient Temperature vs. Switching Current (Latching)

-Ambient Temperature
vs. Must Operate or Must

Release Voltage

G6S-2F(G)

-Shock Malfunction G6S-2F(G)
 $\pm Z$ directions three times each with and without energizing the Relays to check the number of contact malfunctions.

- Electrical Endurance (with Must Operate and Must Release Voltage) *1 G6S-2F(G)

-Contact Reliability Test (Contact Resistance) *1, *2 G6S-2F(G)

-Mutual Magnetic Interference
G6S-2F(G)

- Mutual Magnetic

Interference
G6S-2F(G)

-Electrical Endurance (Contact Resistance) *1 G6S-2F(G)

- Electrical Endurance (with Must Operate and Must Release Voltage) *1 G6S-2F(G)
-External Magnetic Interference

G6S-2F(G)

(Average value)

OHigh-frequency
Characteristics
(Isolation) *1, *2
G6S-2F(G) (Average value (initial))

-Must Operate and Must Release Time Distribution *1 G6S-2F(G)

(Average value)

OHigh-frequency
Characteristics
(Insertion Loss) *1, *3
G6S-2F(G) (Average value (initial))

- Electrical Endurance (Contact Resistance) *1 G6S-2F(G)

-Distribution of Bounce Time *1 G6S-2F(G)

(Average value)

OHigh-frequency Characteristics
(Return Loss, V.SWR) *1, *3 G6S-2F(G) (Average value (initial))

*1. The tests were conducted at an ambient temperature of $23^{\circ} \mathrm{C}$.
*2. The contact resistance data are periodically measured reference values and are not values from each monitoring operation. Contact resistance values will vary according to the switching frequency and operating environment, so be sure to check operation under the actual operating conditions before use
*3. High-frequency characteristics depend on the PCB to which the Relay is mounted. Always check these characteristics, including durability, in the actual machine before use.

Dimensions
Single-side Stable
G6S-2F
G6S-2F-Y

G6S-2G
G6S-2G-Y

Note 1. Each value has a tolerance of $\pm 0.3 \mathrm{~mm}$.
Note 2 .The coplanarity of the terminals is 0.1 mm max.
G6S-2
G6S-2-Y

PCB Mounting Holes
(Bottom View)

Note: Each value has a tolerance of $\pm 0.3 \mathrm{~mm} .^{2.54}$

Terminal Arrangement/
Internal Connections (Top View)

Terminal Arrangement/
Internal Connections
(Bottom View)

Single-winding Latching

Note 1. Each value has a tolerance of $\pm 0.3 \mathrm{~mm}$. Note 2.The coplanarity of the terminals is 0.1 mm max.

G6SU-2G

G6SU-2

Mounting Dimensions (Top View)
Tolerance: $\pm 0.1 \mathrm{~mm}$

Mounting Dimensions (Top View)
Tolerance: $\pm 0.1 \mathrm{~mm}$

Terminal Arrangement/
Internal Connections
(Top View)
Orientation mark

Terminal Arrangement/
Internal Connections
(Top View)
Orientation mark

Note 1. Each value has a tolerance of $\pm 0.3 \mathrm{~mm}$.
Note 2.The coplanarity of the terminals is 0.1 mm max.

PCB Mounting Holes

 (Bottom View)Terminal Arrangement/ Internal Connections
(Bottom View)
Orientation mark

Note: Each value has a tolerance of $\pm 0.3 \mathrm{~mm}$.

Double-winding Latching
 G6SK-2F

Mounting Dimensions (Top View)
Tolerance: $\pm 0.1 \mathrm{~mm}$

Note 2.The coplanarity of the terminals is 0.1 mm max.

G6SK-2G

G6SK-2

Terminal Arrangement/ Internal Connections (Top View)

Terminal Arrangement/ Internal Connections (Bottom View)

Note: Each value has a tolerance of $\pm 0.3 \mathrm{~mm}$.

■Tape Packing (Surface Mounting Terminal Models)

- When ordering Relays in tape packing, add the prefix "-TR" to the model number, otherwise the Relays in tube packing will be provided.

Relays per Reel: 400 pcs
Minimum ordering unit: 2 reels (800 pcs)
(1) Direction of Relay Insertion

(2) Reel Dimensions

(3) Carrie Tape Dimensions

G6S-2F(-Y), G6SU-2F, G6SK-2F

G6S-2G(-Y), G6SU-2G, G6SK-2G

Recommended Soldering Method

(1) IRS Method (Mounting Solder: Lead)

(The temperature profile indicates the temperature on the circuit board surface.)
(2) IRS Method (Mounting Solder: Lead-free)

(The temperature profile indicates the temperature on the PCB.)

Approved Standards

UL recognized: \%I (File No. E41515)
CSA certified: © (File No. LR31928)

Contact form	Coil ratings	Contact ratings	Number of test operations
DPDT (2c)	2 to 48 VDC	$3 \mathrm{~A}, 30 \mathrm{VDC}$ at $40^{\circ} \mathrm{C}$ $0.3 \mathrm{~A}, 110 \mathrm{VDC}$ at $40^{\circ} \mathrm{C}$ $0.5 \mathrm{~A}, 125 \mathrm{VAC}$ at $40^{\circ} \mathrm{C}$	6,000

EN/IEC (File No. 8064)

Contact form	Isolation category	Voltage
DPDT (2c)	Supplementary Isolation	250 VAC

- The thickness of cream solder to be applied should be within a range between 150 and $200 \mu \mathrm{~m}$ on OMRON's recommended PCB pattern.
- In order to perform correct soldering, it is recommended that the correct soldering conditions be maintained as shown below on the left side.
Correct Soldering Incorrect Soldering

Visually check that the Relay is properly soldered.

Precautions

- Please refer to "PCB Relays Common Precautions" for correct use.

Correct Use
Long-term Continuously ON Contacts

- Long-term Continuously ON Contacts
- Using the Relay in a circuit where the Relay will be ON continuously for long periods (without switching) can lead to unstable contacts because the heat generated by the coil itself will affect the insulation, causing a film to develop on the contact surfaces. We recommend using a latching relay (magnetic-holding relay) in this kind of circuit. If a single-side stable model must be used in this kind of circuit, we recommend using a fail-safe circuit design that provides protection against contact failure or coil burnout.

- Relay Handling

- Use the Relay as soon as possible after opening the moistureproof package. If the Relay is left for a long time after opening the moisture-proof package, the appearance may suffer and seal failure may occur after the solder mounting process. To store the Relay after opening the moisture-proof package, place it into the original package and sealed the package with adhesive tape.
- When washing the product after soldering the Relay to a PCB, use a water-based solvent or alcohol-based solvent, and keep the solvent temperature to less than $40^{\circ} \mathrm{C}$. Do not put the Relay in a cold cleaning bath immediately after soldering.
- Claw Securing Force During Automatic Mounting
- During automatic insertion of Relays, be sure to set the securing force of each claw to the following so that the Relay's characteristics will be maintained.

B Dimension A: 1.96 N max. Dimension B: 4.90 N max. Dimension C: 1.96 N max.

OMRON Corporation

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for General Purpose Relays category:
Click to view products by Omron manufacturer:
Other Similar products are found below :
PCN-105D3MH,000 59641F200 5JO-1000CD-SIL LY1SAC110120 5X827E 5X837F 5X840F 5X842F 5X848E LY2N-AC120 LY2SAC220/240 LY2-US-AC120 LY3-US-AC120 LY4F-UA-DC12 LY4F-UA-DC24 LY4F-US-AC120 LY4F-US-AC240 LY4F-US-DC24 LY4F-VD-AC110 LYQ20DC12 M115C60 M115N010 M115N0150 6031007G 603-12D 61211T0B4 61212T400 61222Q400 61243B600 $\underline{61243 \mathrm{C} 500}$ 61243Q400 61311BOA2 61311BOA6 61311BOA8 61311C0A2 61311COA1 61311COA6 61311F0A2 61311QOA1 61311QOA4 61311T0D6 61311TOA6 61311TOA7 61311TOB3 61311TOB4 61311U0A6 61312Q600 61312T400 61312T600 61313U200

[^0]: Note 1. When ordering, add the rated coil voltage to the model number.
 Example: G6S-2F 3 VDC
 Note 2.When ordering tape packing, add -TR" to the model number.
 Be sure since -TR" is not part of the relay model number, it is not marked on the relay case.

