A High-capacity, High-dielectric-strength Relay Compatible with Momentary Voltage Drops

- No contact chattering for momentary voltage drops up to 50% of rated voltage.
- Wide-range AC-activated coil that handles 100 to 120 or 200 to 240 VAC at either 50 or 60 Hz .
- Miniature size for maximum switching power, particularly for inductive loads.
- Flame-resistance materials (UL94V-0-qualifying) used for all insulation material.
- Quick-connect, screw, and PCB terminals, and DIN track mounting available.
- Conforms to UL, CSA, TUV and meets IEC950.
- Safety design with contact gap of 3 mm .

Note. Accessories: E-bracket, Adapter, Front-connecting socket and Cover sold separately.

■Model Number Legend

G7L- $\square \square-\frac{\square}{2} \frac{\square}{3} \frac{\square}{5}$

1. Number of Poles
2. Terminal Shape

T: Quick connect terminals (\#250)
B: Screw terminals
P: PCB terminals

A: \square PST-NO

4. Mounting Construction

Blank: E-bracket
UB: Upper bracket
5. Special Functions

J : With test button
iguration

Classification		Contact form	Quick-connect terminals	Screw terminals سाल	PCB terminals
E-bracket mounting (E-bracket is sold separately)	-	SPST-NO	G7L-1A-T	G7L-1A-B	-
		DPST-NO	G7L-2A-T	G7L-2A-B	-
	With test	SPST-NO	G7L-1A-TJ	G7L-1A-BJ	-
	button	DPST-NO	G7L-2A-TJ	G7L-2A-BJ	-
Upper bracket mounting	-	SPST-NO	G7L-1A-TUB	G7L-1A-BUB	-
		DPST-NO	G7L-2A-TUB	G7L-2A-BUB	-
	With test button	SPST-NO	G7L-1A-TUBJ	G7L-1A-BUBJ	-
		DPST-NO	G7L-2A-TUBJ	G7L-2A-BUBJ	-
PCB mounting	-	SPST-NO	-	-	G7L-1A-P
		DPST-NO	-	-	G7L-2A-P

■List of E-bracket Mounting Models

Application Examples

Compressors for air conditioners and heater switching controllers.

- Switching controllers for power tools or motors.
- Power controllers for water heaters.
- Power controllers for dryers.
- Lamp controls, motor drivers, and power supply switching in copy machines, facsimile machines, and other office equipment.
- Lighting controllers.
- Power controllers for packers or food processing equipment.
- Magnetron control in microwaves.
- Power controllers for Uninterruptible Power Supply (UPS)

			Mounting	E-brackets	DIN Track Mounting Adapter	Front-connecting Socket
Terminal	Contact form	Model	Test button			
Quickconnect terminals	SPST-NO	G7L-1A-T	-	\bigcirc	\bigcirc	\bigcirc
		G7L-1A-TJ	With test button	\bigcirc	\bigcirc	\bigcirc
	DPST-NO	G7L-2A-T	-	\bigcirc	\bigcirc	\bigcirc
		G7L-2A-TJ	With test button	\bigcirc	\bigcirc	\bigcirc
Screw terminals	SPST-NO	G7L-1A-B	-	\bigcirc	\bigcirc	-
		G7L-1A-BJ	With test button	\bigcirc	\bigcirc	-
	DPST-NO	G7L-2A-B	-	\bigcirc	\bigcirc	-
		G7L-2A-BJ	With test button	\bigcirc	\bigcirc	-

-Ordering Information

E-bracket/Adapter/Socket Mounting
Quick-connect Terminal

Number of poles	Model	Rated coil voltage	Minimum packing unit
1 pole	G7L-1A-T	AC: 12, 24, 100/120, 200/240	
		DC: 6, 12, 24, 48, 100	pcs./tray
2 poles	G7L-2A-T	AC: 12, 24, 50, 100/120, 200/240	
		DC: $6,12,24,48,100$	

Upper Bracket Mounting
Quick-connect Terminal

Number of poles	Model	Rated coil voltage	Minimum packing unit
1 pole		AC: $12,24,100 / 120,200 / 240$	20 pcs./tray
		DC: $6,12,24,48,100$	
2 poles	G7L-2A-TUB	AC: $12,24,50,100 / 120,200 / 240$	
		DC: $6,12,24,48,100$	

E-bracket/Adapter Mounting
Screw Terminal

Number of poles	Model	Rated coil voltage	Minimum packing unit
1 pole	G7L-1A-B	AC: $12,24,100 / 120,200 / 240$	20 pcs./tray
		DC: $6,12,24,48,100$	
2 poles	G7L-2A-B	AC: $12,24,100 / 120,200 / 240$	
		DC: $12,24,48,100$	

Upper Bracket Mounting
Screw Terminal

Number of poles	Model	Rated coil voltage	Minimum packing unit
1 pole		AC: $24,100 / 120,200 / 240$	20 pcs./tray
		DC: $6,12,24,48,100$	
2 poles	G7L-2A-BUB	AC: $12,24,50,100 / 120,200 / 240$	
		DC: $6,12,24,48,100$	

PCB Mounting

Number of poles	Model	Rated coil voltage	Minimum packing unit
1 pole	G7L-1A-P	AC: 100/120, 200/240	20 pcs./tray
		DC: 12, 24, 48, 100	
2 poles	G7L-2A-P	AC: 24, 100/120, 200/240	
		DC: 6, 12, 24, 48, 100	

DIN Track Mounting Accessories

Applicable products	Name	Model	Minimum packing unit
Adaptor Surface Connection Socket	DIN Track	PFP-100N	10 pcs.
		PFP-50N	
		PFP-100N2	
	End plate	PFP-M	
	Spacer	PFP-S	

Note. Order the models above in increments of the minimum quantity packaged.

E-bracket/Adapter/Socket Mounting (with test button) Quick-connect Terminal

Number of poles	Model	Rated coil voltage	Minimum packing unit
1 pole	G7L-1A-TJ	AC: $24,100 / 120,200 / 240$	20 pcs./tray
		AC: $24,24,48,100$	
		DC: $6,12,24,48,100$	

Upper Bracket Mounting (with test button) Quick-connect Terminal

Number of poles	Model	Rated coil voltage	Minimum packing unit
		AC: $24,100 / 120,200 / 240$	
2 2 poles	G7L-2A-TUBJ $6,12,24,48,100$	AC: $12,24,50,100 / 120,200 / 240$	
		DC: $6,12,24,48,100$	

E-bracket/Adapter Mounting (with test button)
Screw Terminal

Number of poles	Model	Rated coil voltage	Minimum packing unit
1 pole		AC: $12,24,100 / 120,200 / 240$	20 pcs./tray
		DC: 12,24	
2 poles	G7L-2A-BJ	AC: $24,100 / 120,200 / 240$	
		DC: $12,24,48,100$	

Upper Bracket Mounting (with test button)

Screw Terminal

Number of poles	Model	Rated coil voltage	Minimum packing unit
1 pole		AC: 24, 100/120, 200/240	20 pcs./tray
		DC: 6, 12, 24, 48	
2 poles	G7L-2A-BUBJ	AC: 24, 100/120, 200/240	
		DC: 6, 12, 24, 48, 100	

Note 1. When ordering, add the rated coil voltage to the model number. Example: G7L-1A-T AC12 However, the notation of the coil voltage on the product case as well as on the packing will be marked as $\square \square$ VDC.
Note 2. Refer to the precautions on PCB Relays provided in General Information of the Relay Product Data Book, and "w - $\square-3$ " for coil characteristics of AC operation.
E-bracket/Adaptor/Socket/Cover

Applicable Relay models	Name	Model	$\begin{gathered} \text { Minimum } \\ \text { packing unit } \end{gathered}$			
G7L-1A-T						
G7L-1A-TJ	E-bracket	R99-07	10 pcs.			
G7L-1A-B						
G7L-2A-T						
G7L-2A-TJ	Adapter	P7LF-D	1 pcs.			
G7L-2A-B						
G7L-1A-T						
G7L-1A-TJ	Front-connecting Socket	P7LF-06	1 pcs.			
G7L-2A-T						
G7L-2A-TJ						
G7L-1A-B						
G7L-1A-BJ						
G7L-1A-BUB						
G7L-2A-B	Cover	P7LF-C				
G7L-2A-BJ						
G7L-2A-BUB						
G7L-2A-BUBJ						

Note. Order the models above in increments of the minimum quantity packaged.

Ratings

Coil

Item	Rated current (mA)	Coil resistance (Ω)	Coil inductance (H)		Must operate voltage	Must release voltage	$\begin{array}{\|c\|} \hline \text { Max. } \\ \text { permissible } \end{array}$	Power consumption (VA-W)
Rated voltage			Armature ON	$\begin{gathered} \text { Armature } \\ \text { OFF } \end{gathered}$	On the basis of rated voltage			
12 VAC	142							$\begin{array}{\|l} \text { Approx. } 1.7 \\ \text { to } 2.5 \end{array}$
24 VAC	71				75\% max.	15\% min.	110\%	
50 VAC	34							
100 to 120 VAC	17.0 to 20.4				75 V max.	18 V min.	132 V	
200 to 240 VAC	8.5 to 10.2				150 V max.	36 V min.	264 V	
6 VDC	317	18.9	0.09	0.21	75\% max.	15\% min.	110\%	Approx. 1.9
12 VDC	158	75	0.37	0.88				
24 VDC	79	303	1.42	3.54				
48 VDC	40	1220	6.1	15.3				
100 VDC	19	5260	21.3	60.0				

Note 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with tolerances of $+15 \% /-20 \%$ for AC rated current and $\pm 15 \%$ for DC coil resistance.
2. The inductances shown above are reference values.
3. Performance characteristic data are measured at a coil temperature of $23^{\circ} \mathrm{C}$.
4. The maximum allowable coil voltage refers to the maximum value in a varying range of operating power voltage, measured at ambient temperature $23^{\circ} \mathrm{C}$.
5. The "to" (for example "100 to 120") represents the range of rated voltages.

Contacts

Contact Form load Item	$\begin{aligned} & \text { G7L-1A-T } \\ & \text { G7L-1A-B } \end{aligned}$		$\begin{aligned} & \text { G7L-2A-T } \square \\ & \text { G7L-2A-B } \end{aligned}$		$\begin{aligned} & \text { G7L-1A-P } \\ & \text { G7L-2A-P } \end{aligned}$	
	Resistive load	Inductive load $(\cos \phi=0.4)$	Resistive load	$\begin{aligned} & \text { Inductive } \\ & \text { load } \\ & (\cos \phi=0.4) \end{aligned}$	Resistive load	$\begin{gathered} \text { Inductive } \\ \text { load } \\ (\cos \phi=0.4) \end{gathered}$
Contact type	Double break					
Contact material	Ag alloy					
Rated load	30 A at 220 VAC	25 A at 220 VAC	25 A at	220 VAC	20 A a	220 VAC
Rated carry current	30 A		25 A		20 A	
Max. switching voltage	250 VAC					
Max. switching current	30 A		25 A		20 A	

Note. When using B-series (screw) products, since the screw diameter of the contact terminal is M4, be careful that the contact current should be 20 A or less according to JET standard (electrical appliance and material control law of Japan).

■Characteristics

Contact resistance *1		$50 \mathrm{~m} \Omega$ max.
Operate time *2		30 ms max.
Release time *3		30 ms max.
Max. operating frequency	Mechanical	1,800 operations/hr
	Rated load	1,800 operations/hr
Insulation resistance *3		1,000 M 2 min
Dielectric strength	Between coil and contacts	$\begin{aligned} & \text { 4,000 VAC min., } 50 / 60 \mathrm{~Hz} \\ & \text { for } 1 \text { min } \end{aligned}$
	Between contacts of same polarity	2,000 VAC, $50 / 60 \mathrm{~Hz}$ for
	Between contacts of different polarity (DPST-NO model)	$1 \mathrm{~min}$
Impulse withstand voltage		10,000 V between coil and contact *4
Vibration resistance	Destruction	10 to 55 to $10 \mathrm{~Hz}, 0.75 \mathrm{~mm}$ single amplitude (1.5 mm double amplitude)
	Malfunction	10 to 55 to $10 \mathrm{~Hz}, 0.75 \mathrm{~mm}$ single amplitude (1.5 mm double amplitude)
Shock resistance	Destruction	$1,000 \mathrm{~m} / \mathrm{s}^{2}$
	Malfunction	$100 \mathrm{~m} / \mathrm{s}^{2}$
Endurance	Mechanical	$1,000,000$ operations min. (at 1,800 operations/hr)
	Electrical *5	100,000 operations min. (at 1,800 operations/hr under rated load)
Failure rate (P level) (reference value *6)		100 mA at 5 VDC
Weight		Approx. 90 g: Quick-connect terminal models Approx. 100 g : PCB terminal models Approx. 120 g : Screw terminal models

Note. The values given above are initial values.
*1. Measurement conditions: $5 \mathrm{VDC}, 1 \mathrm{~A}$, voltage drop method.
*2. Measurement conditions: Rated operating voltage applied not including contact bounce.
Ambient temperature: $23^{\circ} \mathrm{C}$
*3. Measurement conditions: The insulation resistance was measured with a 500 -VDC megohmmeter at the same locations as the dielectric strength was measured. JEC-212 (1981) Standard Impulse Wave Type ($1.2 \times 50 \mu \mathrm{~s}$).
*5. Ambient temperature: $23^{\circ} \mathrm{C}$
*6. This value was measured at a switching frequency of 60 operations/min.

Ambient operating temperature	$-25^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ (with no icing or condensation)
Ambient operating humidity	5% to 85%

Engineering Data

G7L-1A-T (TJ) (TUB) (TUBJ)
G7L-1A-B (BJ) (BUB) (BUBJ)
Maximum Switching Power

Endurance

G7L-2A-T (TJ) (TUB) (TUBJ) G7L-2A-B (BJ) (BUB) (BUBJ) Maximum Switching Power

Endurance

G7L-1A-P
G7L-2A-P
Maximum Switching Power

Endurance

Ambient Temperature vs. Operate and Release Voltage
G7L-1A VAC (60 Hz)

G7L-1A VDC

Ambient Temperature vs.

Coil Temperature Rise

G7L-1A 120 VAC (50 Hz)

Shock Malfunction

G7L-1A VDC

G7L-2A-T (TUB) 100 to 120 VAC

Momentary Voltage Drop Test G7L-2A-T (TUB) 100 to 120 VAC Test Circuit

Voltage distribution of wave e which chattering does not occur.

Characteristic variation resulted from different mounting directions

G7L-2A-T (TUB) 100 to 120 VAC

Operate time

Release time

Operate voltage

Release voltage

(Note.)The mounting direction A^{\prime} deteriorates switching performance.

Actual Load Endurance Test

G7L-2A 100 to 200 VAC

Operate and Release voltages

$\mathrm{N}=5$

Contact resistance

Load conditions

- 1 ф 220 VAC

- Applied coil voltage: 100% of rated voltage

Operate and Release voltages
$\mathrm{N}=5$

Contact resistance

Load conditions

- $1 \phi 220$ VAC

- Applied coil voltage: 100% of rated voltage

G7L-2A 100 to 200 VAC
Operate and Release voltages

$\mathrm{N}=5$

Load conditions

- 1 ф 220 VAC

- Applied coil voltage: 75% of rated voltage

Operate and Release voltages

$\mathrm{N}=5$

Load conditions

- 1 ф 220 VAC

- Applied coil voltage: 75% of rated
voltage voltage

■Dimensions

- E-bracket Mounting

Quick-connect Terminals Note. E-brackets are sold separately.
G7L-1A-T Terminal Arrangemen

Internal Connections
(Top View)

(No coil polarity)
Note. Refer to page 12 for the coil internal connection diagram

G7L-2A-T

(No coil polarity)
Note. Refer to page 12 for the coil internal connection diagram

G7L-1A-TJ (with Test Button)

(No coil polarity)
Note. Refer to page 12 for the coil internal connection diagram
G7L-2A-TJ (with Test Button)

(No coil polarity)
Note. Refer to page 12 for the coil internal connection diagram

- Adapter Mounting Quick-connect Terminals

Note 1. The DIN Track Mounting Adapter and DIN tracks are sold separately.
2. The DIN Track Mounting Adapter can be track-mounted or screw-mounted.

- Front-connecting Socket Mounting

Note 1. The Front-connecting Socket and DIN tracks are sold separately.
Quick-connect Terminals
2. The Front-connecting Socket can be track-mounted or screw-mounted.

G7L-1A-TJ
(with Test Button)
Terminal Arrangement/ Internal Connections (Top View)

(No coil polarity)
Note. Refer to page 12 for the coil internal connection diagram

G7L-2A-TJ

 (with Test Button)

Mounting Holes

- Upper Bracket Mounting

 Quick-connect TerminalsG7L-1A-TUB
Terminal Arrangement/ Internal Connections (Top View)

(No coil polarity)
Note. Refer to page 12 for the coil internal connection diagram

G7L-2A-TUB

(No coil polarity) Note. Refer to page 12 for the coil internal connection diagram
G7L-1A-TUBJ (with Test Button)

(No coil polarity)
Note. Refer to page 12 for the coil internal connection diagram

Mounting Holes

G7L-2A-TUBJ

 (with Test Button)

Power Relay

- E-bracket Mounting

Screw Terminals
Note. E-brackets are sold separately.

- Adapter Mounting Screw Terminals

Note 1. The DIN Track Mounting Adapter and DIN tracks are sold separately
2. The DIN Track Mounting Adapter can be track-mounted or screw-mounted.

G7L-1A-B

Terminal Arrangement/ Internal Connections (Top View)

(No coil polarity)
Note. Refer to page 12 for the coil internal connection diagram

(No coil polarity)
Note. Refer to page 12 for the coil internal connection diagram

Mounting Holes

G7L-1A-BJ
(with Test Button)

Terminal Arrangement/
Internal Connections
(Top View)

(No coil polarity)
Note. Refer to page 12 for the coil internal connection diagram

G7L-2A-BJ

 (with Test Button)

Note. Refer to page 12 for the coil internal connection diagram

- Upper Bracket Mounting

Screw Terminals

G7L-2A-BUB

Note. Refer to page 12 for the coil internal connection diagram
G7L-1A-BUBJ (with Test Button)

Note. Refer to page 12 for the coil internal connection diagram
G7L-2A-BUBJ (with Test Button)

(No coil polarity)
Note. Refer to page 12 for the coil internal connection diagram

Mounting Holes
Two, 4.5-dia. hole or

- PCB Mounting

 PCB Terminals

- Adapter

P7LF-D

Mounting Holes

- Front-connecting Front-connecting
Socket
P7LF-06

Mounting Holes

- Cover

P7LF-C

Put the P7LF-C cover onto the terminals in order to protect the user from electric shock.

Approved Standards

- A variety of Safety Standard approved products for standard models.

UL Recognized (File No. E41643)

Model	Coil ratings	Contact ratings	Number of test operations
$\begin{aligned} & \text { G7L-1A-T } \square \\ & \text { G7L-1A-B } \square \\ & \text { G7L-1A-P } \\ & \text { G7L-2A-T } \square \\ & \text { G7L-2A-B } \square \\ & \text { G7L-2A-P } \end{aligned}$	$\begin{aligned} & 12 \text { to } 240 \text { VAC } \\ & 6 \text { to } 220 \text { VDC } \end{aligned}$	$30 \mathrm{~A}, 277$ VAC (RES) $40^{\circ} \mathrm{C}$	100,000
		$1.5 \mathrm{~kW}, 120 \mathrm{VAC}$ (T) $40^{\circ} \mathrm{C}$	6,000
		1.5 HP, 120 VAC $40^{\circ} \mathrm{C}$	1,000
		3 HP 277 VAC $40^{\circ} \mathrm{C}$	100,000
		$20 \mathrm{FLA} / 120$ LRA, 120 VAC $40^{\circ} \mathrm{C}$	30,000
		17 FLA/102 LRA, 277 VAC $40^{\circ} \mathrm{C}$	30,000
		TV-10, 120 VAC $40^{\circ} \mathrm{C}$	25,000

CSA certified①(File No. LR31928)

Model	Coil ratings	Contact ratings	Number of test operations
G7L-1A-P	$\begin{aligned} & 12 \text { to } 240 \text { VAC } \\ & 6 \text { to } 220 \text { VDC } \end{aligned}$	2.4 kW, 120 VAC (T) $40^{\circ} \mathrm{C}$	6,000
		$1.5 \mathrm{HP}, 120 \mathrm{VAC}$ (T) $40^{\circ} \mathrm{C}$	1,000
		3 HP 277 VAC $40^{\circ} \mathrm{C}$	
		20.5 FLA/105 LRA, 120 VAC $85^{\circ} \mathrm{C}$	100,000
		TV-10, 120 VAC $40^{\circ} \mathrm{C}$	25,000
G7L-1A-T \square	$\begin{aligned} & 12 \text { to } 240 \text { VAC } \\ & 6 \text { to } 220 \text { VDC } \end{aligned}$	$30 \mathrm{~A}, 277$ VAC (RES) $40^{\circ} \mathrm{C}$	100,000
G7L-1A-B \square		$2.4 \mathrm{~kW}, 120 \mathrm{VAC}$ (T) $40^{\circ} \mathrm{C}$	6,000
		$1.5 \mathrm{HP}, 120 \mathrm{VAC} 40^{\circ} \mathrm{C}$	1,000
G7L-2A-T \square		3 HP 277 VAC $40^{\circ} \mathrm{C}$	
G7L-2A-B \square		20.5 FLA/105 LRA, 120 VAC $85^{\circ} \mathrm{C}$	100,000
G7L-2A-P		TV-10, 120 VAC $40^{\circ} \mathrm{C}$	25,000

- Reference

UL Approved Type
UL508 Industrial Control Devices
UL1950 Information processing equipment (Including office equipment)
CSA Approved Type \qquad
CSA C22.2 No.1, 14
Industrial Control Devices
CSA C22.2 No. 950 Information processing equipment (Including office equipment)
TÜV EN/IEC Standard Approved Type.
EN61810-1 Relay

EN/IEC, TÜV Certified Δ (Certificate No. R50059083)

Model	Coil ratings	Contact ratings	Approved switching operations
	$\begin{aligned} & 6,12,24,48, \\ & 100,110,200, \\ & 220 \text { VDC } \\ & 12,24,50, \\ & 100 \text { to } 120, \\ & 200 \text { to } 240 \\ & \text { VAC } \end{aligned}$	SPST-NO (1a)	
G7L-1A-B \square		$\begin{aligned} & 30 \mathrm{~A}, 250 \mathrm{VAC} \sim(\cos \phi=1) 60^{\circ} \mathrm{C} \\ & 25 \mathrm{~A}, 250 \mathrm{VAC} \sim(\cos \phi=0.4) 60^{\circ} \mathrm{C} \\ & 30 \mathrm{~A}, 120 \mathrm{VAC} \sim(\cos \phi=0.4) 60^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	50,000
G7L-2A-B \square		DPST-NO (2a)	50,000
		$\begin{aligned} & 25 \mathrm{~A}, 277 \mathrm{VAC} \sim(\cos \phi=1) 60^{\circ} \mathrm{C} \\ & 25 \mathrm{~A}, 277 \mathrm{VAC} \sim(\cos \phi=0.4) 60^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	
G7L-1A-T \square		SPST-NO (1a)	50,000
		$\begin{aligned} & 25 \mathrm{~A}, 240 \mathrm{VAC} \sim(\cos \phi=1) 60^{\circ} \mathrm{C} \\ & 25 \mathrm{~A}, 240 \mathrm{VAC} \sim(\cos \phi=0.4) 60^{\circ} \mathrm{C} \\ & 25 \mathrm{~A}, 277 \mathrm{VAC} \sim(\cos \phi=1) 60^{\circ} \mathrm{C} \\ & 25 \mathrm{~A}, 277 \mathrm{VAC} \sim(\cos \phi=0.4) 60^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	
G7L-2A-T \square		DPST-NO (2a)	50,000
		$\begin{aligned} & 25 \mathrm{~A}, 240 \mathrm{VAC} \sim(\cos \phi=1) 60^{\circ} \mathrm{C} \\ & 25 \mathrm{~A}, 240 \mathrm{VAC} \sim(\cos \phi=0.4) 60^{\circ} \mathrm{C} \\ & 25 \mathrm{~A}, 277 \mathrm{VAC} \sim(\cos \phi=1) 60^{\circ} \mathrm{C} \\ & 25 \mathrm{~A}, 277 \mathrm{VAC} \sim(\cos \phi=0.4) 60^{\circ} \mathrm{C} \end{aligned}$	
G7L-1A-P		SPST-NO (1a)	50,000
		$\begin{aligned} & 20 \mathrm{~A}, 240 \mathrm{VAC} \sim(\cos \phi=1) 60^{\circ} \mathrm{C} \\ & 20 \mathrm{~A}, 240 \mathrm{VAC} \sim(\cos \phi=0.4) 60^{\circ} \mathrm{C} \\ & 25 \mathrm{~A}, 277 \mathrm{VAC} \sim(\cos \phi=1) 60^{\circ} \mathrm{C} \\ & 25 \mathrm{~A}, 277 \mathrm{VAC} \sim(\cos \phi=0.4) 60^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	
		DPST-NO (2a)	
G7L-2A-P		$\begin{aligned} & 20 \mathrm{~A}, 240 \mathrm{VAC} \sim(\cos \phi=1) 60^{\circ} \mathrm{C} \\ & 20 \mathrm{~A}, 240 \mathrm{VAC} \sim(\cos \phi=0.4) 60^{\circ} \mathrm{C} \\ & 25 \mathrm{~A}, 277 \mathrm{VAC} \sim(\cos \phi=1) 60^{\circ} \mathrm{C} \\ & 25 \mathrm{~A}, 277 \mathrm{VAC} \sim(\cos \phi=0.4) 60^{\circ} \mathrm{C} \end{aligned}$	50,000

Correct Use

- Installation

- Although there are not specific limits on the installation site, it should be as dry and dust-free as possible.
- Using in an atmosphere of high temperature, high humidity and corrosive gas may deteriorate its performance characteristic caused by condensation or corrosive products, resulting in failure or burn damage of the Relay.
- PCB Terminal-equipped Relays weigh approximately 100 g . Be sure that the PCB is strong enough to support them. We recommend dual-side through-hole PCBs to reduce solder cracking from heat stress.
- Relays with test buttons must be mounted facing down. Be careful not to touch the test button accidentally. Doing so may turn ON the contact.
- Be sure to use the test button for test purposes only (with test-button models). The test button is used for Relay circuit tests, such as circuit continuity tests. Do not attempt to switch the load with the test button.

- Micro Loads

- The G7L is used for switching power loads, such as motor, transformer, solenoid, lamp, and heater loads. Do not use the G7L for switching micro loads, such as signals.

- Soldering PCB Terminals

- Do not perform automatic soldering but solder manually.
- Solder with the following conditions: Soldering iron temperature (max.) $380^{\circ} \mathrm{C}$, Soldering time within 10 seconds.
- Do not wash down the entire Relay because it does not have an airtight construction.

- Connecting

- Refer to the following table when connecting a wire with a crimpstyle terminal to the G7L.

	Screw terminals	Front-connecting Socket
Coil		
Contact		

- Allow suitable slack on leads when wiring, and do not apply excessive force to the terminals.
- Tightening torque

Coil: $\quad 0.78$ to $1.18 \mathrm{~N} \cdot \mathrm{~m}$
Contact: 0.98 to $1.37 \mathrm{~N} \cdot \mathrm{~m}$

When connecting with screws, if the screws are not sufficiently tightened, the lead wire can become detached and may lead to abnormal heating or fire caused by faulty contact.

- Mounting Torque $0.98 \mathrm{~N} \cdot \mathrm{~m}$ Tighten with two M4 screws when mounting.
(Top bracket type)
- Do not apply excessive force when mounting or dismounting the Faston receptacle.Insert and remove terminals carefully one at a time. Do not insert terminals at an angle, or insert/remove multiple terminals at the same time.
- Do not connect to the terminals by soldering
- Refer to the following table for recommendations of connectors made by OMRON.

Type	Receptacle terminals	Housing
\#250 terminals		
(width: 6.35 mm)	XT3W-S441-12	XT3B-1S white
	XT3W-S442-12 XT3W-S443-12	XT3

- Reference Data

- The ratio of rated voltage between 100 to 120 VAC are values measured on the basis of 100 VAC .

- Operating Coil

(Coil internal connections diagram)

- DC Coil

- AC Coil

- If a transistor drives the G7L check the leakage current, and connect a bleeder resistor if necessary.
- The AC coil is provided with a built-in full-wave rectifier. If a triac, such as an SSR, drives the G7L, the G7L may not release. Be sure to perform a trial operation with the G7L and the triac before applying them to actual use.
- DIN Track Mounting Adapter and Front-connecting Socket
(DIN Track Mounting)
- The DIN Track Mounting Adapter and Front-connecting Socket can be mounted on the G7L with just one hand and dismounted with ease by using a screwdriver.
- To support the G7L mounted on a DIN Track Mounting Adapter or Front-connecting Socket, use the PFP-M End Plate. Put the End Plate onto the DIN Track Mounting Adapter or Front-connecting Socket so that the surface mark of the End Plate faces upwards. Then tighten the screw of the End Plate securely with a screwdriver.

(Screw Mounting)

- Screw-mount the DIN Track Mounting Adapter or Front-connecting Socket securely after opening screw mounting holes on them.
- When cutting or opening holes on the panel after the Front-connecting Socket is mounted, take proper measures so that the cutting chips will not fall onto the Relay terminals. When cutting or opening holes on the upper part of the panel, mask the Front-connecting Socket properly with a cover.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for General Purpose Relays category:
Click to view products by Omron manufacturer:
Other Similar products are found below :
PCN-105D3MH,000 59641F200 5JO-1000CD-SIL LY1SAC110120 5X827E 5X837F 5X840F 5X842F 5X848E LY2N-AC120 LY2SAC220/240 LY2-US-AC120 LY3-US-AC120 LY4F-UA-DC12 LY4F-UA-DC24 LY4F-US-AC120 LY4F-US-AC240 LY4F-US-DC24 LY4F-VD-AC110 LYQ20DC12 M115C60 M115N010 M115N0150 6031007G 603-12D 61211T0B4 61212T400 61222Q400 61243B600 $\underline{61243 \mathrm{C} 500}$ 61243Q400 61311BOA2 61311BOA6 61311BOA8 61311C0A2 61311COA1 61311COA6 61311F0A2 61311QOA1 61311QOA4 61311T0D6 61311TOA6 61311TOA7 61311TOB3 61311TOB4 61311U0A6 61312Q600 61312T400 61312T600 61313U200

