Compact Power Relay Capable of Switching 1,000 VDC Loads

- DC high capacity switching for both normal and reverse polarity available by adding reverse polarity specification addition.
- Two poles wired in series to break or switch 600 to 1,000 VDC.
- Contribute for lower power consumption.
(low power consumption of approx. 600 mW at 50% reduced coil voltage).
- UL and EN conformed.

- Designed for safety with $6.0-\mathrm{mm}$ contact gap (two-pole series wiring).

RoHS Compliant

Model Number Legend

G7L- $\frac{2}{1} \frac{\mathrm{~A}}{2} \frac{\square}{3}-\mathrm{X}-\frac{\square}{4}$

1. Number of poles

2: 2-poles
2. Contact Form

A: DPST-NO (2a)
3. Enclosure rating Blank: Flux protection
4. Additional Models

None: Standard model
L: General purpose model

Application Examples

- Photovoltaic Power Systems
- Energy Storage System
- Inverter
- UPS
- FA DC link

Ordering Information

Classification	Contact Form	Enclosure rating	Terminal Shape	Model	Rated coil voltage	Minimum packing unit
Standard model	DPST-NO*	Flux protection	PCB terminals	G7L-2A-X	$12 \mathrm{VDC}, 24 \mathrm{VDC}$	$20 \mathrm{pcs} /$ tray

Note. When ordering, add the rated coil voltage to the model number.
Example: G7L-2A-X DC24
However, the notation of the coil voltage on the product case as well as on the packing will be marked as[][] VDC.

* It is assumed that the Relay will be used with 2-pole series wiring.

Ratings

- Coil

Rated Voltage	Item	Rated current	Coil resistance	Must operate vo	release vo	Max. voltage	Power consumption (W)
	(V)		(Ω)	\% of rated voltage			
DC	12	191.7	63	75\% max.	10\% min.	110\%	Approx. 2.3
	24	95.8	250				Approx. 0.6 *

Note 1. The rated current and coil resistance were measured at a coil temperature of $23^{\circ} \mathrm{C}$ with tolerances of $\pm 15 \%$.
Note 2. The operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$.
Note 3. The maximum permissible voltage is the maximum value of the fluctuation range for the Relay coil operating power supply and was measured at an ambient temperature of $23^{\circ} \mathrm{C}$.

* Power consumption with Holding Voltage is 0.6 W. Please confirm the detail in page 4 Coil Voltage Reduction (Holding Voltage).
- Contacts(Two-pole Series Wiring)

Item	G7L-2A-X	G7L-2A-X-L
	Resistive load	
Contact type	Double break	
Contact material	Ag alloy	
Rated load	30 A at $600 \mathrm{VDC} / 25 \mathrm{~A}$ at 1,000 VDC	20 A at $600 \mathrm{VDC} / 20 \mathrm{~A}$ at 1,000 VDC
Rated carry current *	30 A	20 A
Max. switching voltage	1,000 VDC	
Max. switching current	30 A	20 A

[^0]
Characteristics

Item		G7L-2A-X	G7L-2A-X-L
Contact resistance *1		$100 \mathrm{~m} \Omega$ max.	
Operate time *2		30 ms max.	
Release time *2 *5		30 ms max.	
Insulation resistance *3		1,000 M 2 min .	
Dielectric strength	Between coil and contacts	4,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min	
	Between contacts of the same polarity	2,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min	
	Between contacts of different polarity	2,000 VAC, 50/60 Hz for 1 min	
Impulse withstand voltage *4	Between coil and contacts	10 kV	
Vibration resistance	Destruction	10 to 55 to $10 \mathrm{~Hz}, 0.75 \mathrm{~mm}$ single amplitude (1.5 mm double amplitude)	
	Malfunction	10 to 55 to $10 \mathrm{~Hz}, 0.75 \mathrm{~mm}$ single amplitude (1.5 mm double amplitude)	
Shock resistance	Destruction	1,000 m/s ${ }^{2}$	
	Malfunction	$100 \mathrm{~m} / \mathrm{s}^{2}$	
Mechanical durability *5		1,000,000 operations min. (at 1,800 operations/h)	
Electrical durability *5 *6 (Resistive load, for two-pole series wiring.)	Normal polarity	100 operations ($25 \mathrm{~A}, 1,000 \mathrm{VDC}, 85^{\circ} \mathrm{C}$) 6,000 operations ($30 \mathrm{~A}, 600 \mathrm{VDC}, 85^{\circ} \mathrm{C}$) (at 360 operations/h, ON for 1 s and OFF for 9 s)	100 operations ($20 \mathrm{~A}, 1,000 \mathrm{VDC}, 85^{\circ} \mathrm{C}$) 6,000 operations ($20 \mathrm{~A}, 600 \mathrm{VDC}, 85^{\circ} \mathrm{C}$) (at 360 operations/h, ON for 1 s and OFF for 9 s)
	Reverse polarity	5,000 operations ($-30 \mathrm{~A}, 600 \mathrm{VDC}, 85^{\circ} \mathrm{C}$) (at 360 operations/h, ON for 1 s and OFF for 9 s)	5,000 operations ($-20 \mathrm{~A}, 400 \mathrm{VDC}, 85^{\circ} \mathrm{C}$) (at 360 operations/h, ON for 1 s and OFF for 9 s)
Ambient operating temperature		-40° to $85^{\circ} \mathrm{C}$ (with no icing or condensation)	
Ambient operating humidity		5\% to 85\%	
Weight		Approx. 100 g	

Note. The values given above are initial values.
*1. Measurement conditions: $5 \mathrm{VDC}, 1 \mathrm{~A}$, voltage drop method.
*2. Measurement conditions: Rated operating voltage applied, not including contact bounce.
Ambient temperature: $23^{\circ} \mathrm{C}$
*3. Measurement conditions: The insulation resistance was measured with a 1,000 -VDC megohmmeter at the same locations as the dielectric strength was measured.
*4. JEC-212 (1981) Standard Impulse Wave Type ($1.2 \times 50 \mu \mathrm{~s}$).
*5. A diode and zener diode are connected to the relay coil.
*6. The polarity can not be changed every switching. Refer to Polarity change when switching on the page 5.

Dimensions

Terminal Arrangement/Internal Connections (BOTTOM VIEW)

Contacts are Polarized. Perform wiring with care. The coil has no polarity.

PCB Mounting Holes (BOTTOM VIEW)
Tolerance: $\pm 0.1 \mathrm{~mm}$

Two-pole Series Wiring Diagram
(BOTTOM VIEW)

Wire the two poles in a series connection to use the Relay.

Engineering Data (Two-pole Series Wiring)

■ Normal polarity

- Maximum Switching Capacity

G7L-2A-X

G7L-2A-X-L

■Reverse polarity

- Maximum Switching Capacity

G7L-2A-X

G7L-2A-X-L

Switching voltage (V)

- Durability

G7L-2A-X

G7L-2A-X-L

Switching voltage (V)

- Durability

G7L-2A-X

G7L

Approved Standards

- The approval rating values for overseas standards are different from the performance values determined individually confirm the values before use.
UL Recognized ${ }_{c} \boldsymbol{7} \mathbf{N u s}_{\text {us }}$ (File No. E41515)

Model	Coil ratings	Contact ratings	Number of test operations
G7L-2A-X	$12 \mathrm{VDC}, 24 \mathrm{VDC}$	15 A at 1000 VDC (Resistive) $85^{\circ} \mathrm{C}$, Connected in series or Break all lines	6,000
		20 A at 1000 VDC (Resistive) $85^{\circ} \mathrm{C}$, Connected in series	
		25 A at 600 VDC (Resistive) $85^{\circ} \mathrm{C}$, Connected in series or Break all lines	
G7L-2A-X-L	$12 \mathrm{VDC}, 24 \mathrm{VDC}$	15 A at 1000 VDC (Resistive) $85^{\circ} \mathrm{C}$, Connected in series or Break all lines	6,000
		20 A at 1000 VDC (Resistive) $85^{\circ} \mathrm{C}$, Connected in series	
		20 A at 600 VDC (Resistive) $85^{\circ} \mathrm{C}$, Connected in series or Break all lines	

- EN/IEC and VDE Approval (Approval No.40045061)

Model	Coil ratings	Contact ratings	Number of test operations
G7L-2A-X	$12 \mathrm{VDC}, 24$ VDC	25 A at 1000 VDC (Resistive) $85^{\circ} \mathrm{C}$, Connected in series or Break all lines	50
		8,000	
		10,000	
G7L-2A-X-L	20 A at 1000 VDC (Resistive) $85^{\circ} \mathrm{C}$, Connected in series or Break all lines	50	
	$12 \mathrm{VDC}, 24$ VDC	15 A at 1000 VDC (Resistive) $85^{\circ} \mathrm{C}$, Connected in series or Break all lines	6,000
		10,000	

- Circuit Diagrams

Connected in series

Picture 1. Normal polarity

Break all lines

Picture 3. Normal polarity

Picture 2. Reverse polarity

Picture 4. Reverse polarity

Note. The switching part has polarity. Exercise caution.
The diode and zener diode absorb coil surge. (The coil has no polarity.)

Safety Precautions

- Please refer to "PCB Relays Common Precautions" for correct use.

Correct Use

- Contacts are polarized, and durability is the different by polarity. Failure to observe correct DC load connection will result in reduced durability and may risk failure in application.
- The Relay is designed and manufactured under the assumption that it will be used with 2-pole series wiring. Do not use just one pole only.
- Install the Relays in locations that are as dry as possible and have as little dust, dirt, and harmful gas.
- Using the Relay under high temperature, high humidity, or harmful gas may deteriorate its performance characteristics due to condensation or corrosive materials, resulting in failure or burn damage to the Relay.
- The Relay weighs approx. 100 g . Be sure that the PCB is strong enough to support it.
We recommend dual-side through-hole PCBs to reduce solder cracking from heat stress.

- Micro Loads

- These Power Relays are suitable for switching and breaking high-capacity DC. At high-voltage and low-current, breaking characteristics may become unstable. For 1 A or lower switching applications, please consult us.

- Soldering PCB Terminals

- Do not perform automatic soldering. Always solder the terminals manually.
- Solder with the following conditions: Soldering iron temperature (max.) $380^{\circ} \mathrm{C}$, Soldering time within 10 seconds.
- The G7L-X is not sealed. Do not wash the G7L-X with water or detergent.

- Coil Voltage Reduction (Holding Voltage) after Relay Operation

- If the coil voltage is reduced to the holding voltage after Relay operation, first apply the rated voltage to the coil for at least 100 ms , as shown below.
- A voltage of at least 50% of the rated voltage is required for the coil holding voltage. Do not allow voltage fluctuations to cause the coil holding voltage to fall below this level.

	Applied coil voltage	Coil resistance*	Power consumption		
Rated voltage	100%	$63 \Omega(\mathrm{DC12)}$	Approx. 2.3 W		
	$630 \Omega(\mathrm{DC} 24)$	Approx. 0.6 W			
Holding voltage	50%	$253^{\circ} \mathrm{C}$ with			The coil resistance were measured at a coil temperature of $23^{\circ} \mathrm{C}$
:---					
tolerances of $\pm 15 \%$.					

- Connection of Diodes to the Operation Coil

- Connect the standard diode and zener diode (or varistors) to the relay coil. (Refer to the following figure.)
The diode absorbs coil surge. Switching performance may be affected if only a diode is used, so use in combination with a zener diode.
- The coil has no polarity. Connect the diodes in the reverse polarity of the voltage applied to the coil.
- The recommended zener voltage of the zener diode is one to two times the rated coil voltage.
- Use a diode with a reverse breakdown voltage at least 10 times the rated voltage of the coil, and a forward current equal to or greater than the rated current of the coil.

- PCB Mounting Interval

- When mounting Relays side by side on a PCB, use them at a holding voltage of 50%.

- Relay Service Life

- These Relays must be used for high DC voltages. The final failure mode is failure to break the circuit. In a worst-case scenario, burning may extend to surrounding components. Do not use these Relays outside of the specified ratings and service life, or for any application other than high DC voltages. Implement safety circuits and other safety measures to minimize the risk in case of the unlikely event of a failure.
- The electrical durability of these Relays is specified as the number of load switching operations under a resistive load and OMRON-specified standard testing conditions.
The coil drive circuit, ambient environment, switching frequency, or load conditions (e.g., inductive load or capacitor load) may reduce the service life and possibly lead to failure to break. Always confirm the service life in the actual equipment.

- Usage for continuous current

- Following initial operation, after 20 minutes with a steady state carry current of 25 A or more, the relay must be operated with a voltage of 100% or more than rated voltage.

- Polarity change when switching

- During switching operation in application should the polarity change it will reduce switching lifetime performance. Please contact Omron for further information.

OMRON Corporation

Electronic and Mechanical Components Company

Regional Contact

Americas
https://www.components.omron.com/
Asia-Pacific
https://ecb.omron.com.sg/
Korea
https://www.omron-ecb.co.kr/

Europe

http://components.omron.eu/
China
https://www.ecb.omron.com.cn/

Japan

https://www.omron.co.jp/ecb/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for General Purpose Relays category:
Click to view products by Omron manufacturer:

Other Similar products are found below :
PCN-105D3MH,000 59641F200 LY1SAC110120 5X827E 5X837F 5X840F 5X842F 5X848E LY2N-AC120 LY2S-AC220/240 LY2-US-
AC120 LY3-US-AC120 LY4F-UA-DC12 LY4F-UA-DC24 LY4F-US-AC120 LY4F-US-AC240 LY4F-US-DC24 LY4F-VD-AC110
LYQ20DC12 M115C60 M115N010 M115N0150 6031007G 603-12D 61211T0B4 61212T400 61222Q400 61243B600 61243C500
61243Q400 61311BOA2 61311BOA6 61311BOA8 61311C0A2 61311COA1 61311COA6 61311F0A2 61311QOA1 61311QOA4
$\underline{61311 \mathrm{~T} 0 \mathrm{D} 6} \underline{61311 \mathrm{TOA} 6} \underline{61311 \mathrm{TOA} 7} \underline{61311 \mathrm{TOB} 3} \underline{61311 \mathrm{TOB} 4} \underline{61311 \mathrm{U} 0 \mathrm{~A} 6} \underline{61312 \mathrm{Q} 600} \underline{61312 \mathrm{~T} 400} \underline{61312 \mathrm{~T} 600} \underline{61313 \mathrm{U} 200} \underline{61313 \mathrm{U} 400}$

[^0]: * Refer to Usage for continuous current on the page 5 for the continuous current more than 25 A .

