

High Power PCB Relay for Automotive and DC12 V Applications

G8PM Relay

High Load Relay for Motor/Resistive/Lamp Control Applications

- · Can replace Mini ISO Plug-in type relay
- Small size & High heat resistance enable for usage in engine room
- · Can support 60 A Fuse
- PIP reflow compliant
- Temperature range -40°C to +125°C
- · Latching model available

Model Number Legend

■Single Stable Model

1. Number of Contact Poles

1: 1-pole

2. Contact Form

A: SPST (1 Form A)

■Latching Model

1. Functional classification

K: 2-winding latching

2. Number of Contact Poles

1: 1-pole

3. Contact Form

A: SPST (1 Form A)

3. Contact structure

W: Double contact

4. Protective structure

7: Flux tight (Open vent hole) (RT II IEC61810)

5. Special function

R: Pin in paste compliant type

4. Contact structure

Blank: Single contact

5. Protection structure

7: Flux tight (Open vent hole) (RT II IEC61810)

6. Polarity of coil

Blank: Normal polarity, positive voltage on Terminal 3 & 6 1: Reversed polarity, negative voltage on Terminal 3 & 6

Application Examples

- DC motor/resistive/lamp application control
- · Automotive DC applications (Smart Junction Box, Main power, Radiator fan, EPS, DC/DC converter, Head lamp, etc.)

Ordering Information

■Single Stable Model

Classification	Contact form	Protective structure	Rated coil voltage (V)	Model	Minimum Packing unit (Tube packing)
Single Stable	SPST 1 Form A double contact	Flux tight (open vent hole) (RT II IEC61810)	DC12	G8PM-1AW7R DC12	1200 pcs. / box (40 pcs. x 30 tubes)

■Latching Model

Classification	Contact form	Protective structure	Rated coil voltage (V)	Model	Minimum Packing unit (Tube packing)
2-winding	SPST 1 Form A single contact	Flux tight (open vent hole)	DC12	G8PM-K1A7R DC12	1200 pcs. / box
latching	SPST T Form A single contact	(RT II IEC61810)	DC12	G8PM-K1A71R DC12	(40 pcs. x 30 tubes)

Note. Above models are not certificated for the safety standards of UL or CSA, etc.

7. Special functionR: Pin in paste compliant type

Ratings

●Coil

Classification	Rated voltage (V)		current ıA)	_	oil nce (Ω)	Must- operate voltage (V)	Must- release voltage (V)	Permissible voltage Range (V)	Rated Power consumption (mW)		Model
Single Stable		53	3.3	22	25	7.2 Max.	0.8 Min.	10 to 16	640		G8PM-1AW7R DC12
2-winding	DC12	(Set)	(Reset)	(Set)	(Reset)	(Set)	(Reset)	10 to 16	(Set coil)	(Reset coil)	G8PM-K1A7R DC12
latching		210	268	57.2	44.8	7.2 Max.	7.2 Max.	10 to 16	2520	3210	G8PM-K1A71R DC12

Note 1. The rated current and coil resistance are measured at a coil temperature of 20°C with a tolerance of ±10%.

Note 2. The operating characteristics are measured at a coil temperature of 20°C.

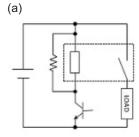
●Contacts

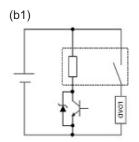
Classification		Single Stable	Latching			
	Model	G8PM-1AW7R DC12	G8PM-K1A7R DC12			
Item	Woder	GOPWI-TAW/R DC12	G8PM-K1A71R DC12			
Contact type		Double	Single			
Contact material		Ag-alloy (Cd-free)				
Maximum carrying current *1	20°C	60 A, DC14 V, Continuous/ 81 A, DC14 V, 1 Hour/ 120 A, DC14 V, 2 Min.	40 A, DC14 V, Continuous/ 54 A, DC14 V, 1 Hour/ 81 A, DC14 V, 2 Min.			
, 0	125°C	40 A, DC14 V, Continuous/ 70 A, DC14 V, 30 Min.	20 A, DC14 V, Continuous/ 46 A, DC14 V, 30 Min.			
Max. switching current *2		150 A Inrush, 80 A break	100 A Inrush, 40 A Break			
Min. switching current		DC12 V, 0.1 A	DC12 V, 1 A			

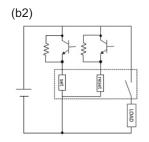
^{*1.} Measured with reference connection conditions as below,

T1.6 mm FR4 epoxy PCB (Double-sided), Trace: T140 um x L50 mm x W13.2 mm, Cable: 6 mm²

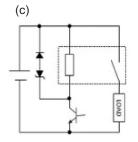
The time limitation doesn't guarantee the repeated current carrying. Please confirm the performance with the specific conditions.

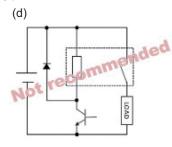

^{*2.} Measured 100 operations with the resistive load at room temperature.


Characteristics


	Classification		Single Stable	Latching			
	Item		G8PM-1AW	G8PM-K1A7R/G8PM-K1A71R			
Contact resistance (S	See *1.)		Typ. 2.5 mΩ, max. 50 mΩ	Typ. 3.0 mΩ, max. 50 mΩ			
Operate time			10 ms max. (DC12 V, not including bounce time)	15 ms max. (DC12 V, not including bounce time)			
Release time			5 ms max. (DC12 V)	15 ms max. (DC12 V)			
Insulation resistance	Between coil ar	nd contacts	100 M	Ω min.			
(See *2.)	Between contact	cts of the same polarity	100 M	Ω min.			
Dialogario atropath	Between coil ar	nd contacts	AC500	V 1 min			
Dielectric strength	Between contact	cts of the same polarity	AC500	V 1 min			
\	Destruction		33 Hz, 45 m/s ²				
Vibration resistance	Malfunction		10 to 500 Hz, 45 m/s² (detection time 10 μs min)				
Oh - alei-t	Destruction		1,000 m/s ² (pulse duration: 6 ms)				
Shock resistance	Malfunction		100 m/s ² (pulse duration: 11 ms, detection time: 10 μs)				
Mechanical endurance	ce (See *3.)		1,000,000	ops. min.			
		Resistive Load	45 A, DC14 V, 100,000 operations min. (1 s ON/1 s OFF)	40 A, DC14 V, 100,000 operations min (1 s ON/1 s OFF)			
Electrical endurance	(See *4.)	Lamp Load	100 A Inrush/ 20 A break, DC14 V, 100,000 operations min. (1 s ON/9 s OFF)	60 A Inrush/ 12 A break, DC14 V, 100,000 operations min. (1 s ON/9 s OFF)			
Ambient operating te	mperature		-40 to 125°C (without fre	eezing or condensation)			
Ambient operating hu	ımidity		35% to 85%RH				
Weight			Approx. 7.6 g Approx. 7.0 g				

- The insulation resistance was measured with a DC500 V megohmmeter.
- The mechanical endurance was measured at a switching frequency of 18,000 operations/hr.
- Please connect N.O. terminal to the +BATT side on Electrical use and connect surge suppression element in parallel with between coil based on recommended circuit.


Recommended circuit: (a), (b), (c) Not-recommended circuit: (d)



OMRON recommends coil driver circuit (b) and (c) for coil surge suppression. However the circuit (d) is not recommended because it may negatively affect the durability performance.

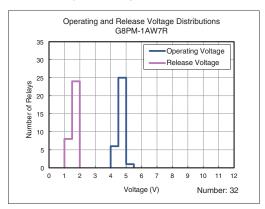
Note 2.

OMRON recommends to install a surge voltage protection on both of set coil and reset coil of the latching relay, due to the large coil current (Reference compoments:

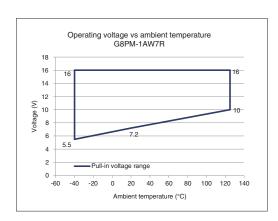
Resistor withstanding 10 W or Zener diode cutting over 30 V.)

Reference Technical Data

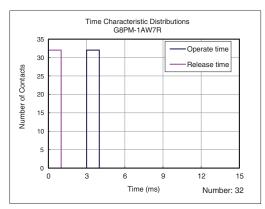
■Single Stable Model


●Actual Electrical performance (reference)

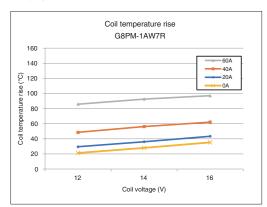
Model	Application	Load voltage	Inrush current	Steady current	Break current	Inductance	Ambient temperature	3		Required cycles (min.)
		(V)	(A)	(A)	(A)	(mH)	(°C)	On (s)	Off (s)	Total
G8PM-1AW7R DC12	Radiator Fan	13.5	80	30	30		-40 to 110	3.0	8.0	156,000
G8PM-1AW7R DC12	Lamp	14.0	100	20	20	-	-40 to 110	0.5	5.5	156,000
G8PM-1AW7R DC12	Resistive	14.0	50	10	10	-	25	2.0	5.0	1,000,000
G8PM-1AW7R DC12	Fuel pump	14.7	50	10	10	-	25	2.0	5.0	1,000,000
G8PM-1AW7R DC12	Starter Motor	14.5	150	50	50	0.16	-40 to 110	3.0	9.0	156,000


●Overcurrent (reference)

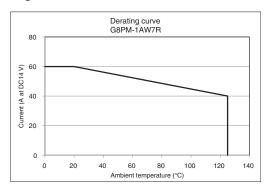
Model	Load & Coil voltage	Current	Fuse rating	Туре	Ambient temperature	Overcurrent time	Result	
	(V)	(A)	(A)		(°C)	(s)		
G8PM-1AW7R DC12	14	81.0	60	Micro	25	3,600	Passed	
G8PM-1AW7R DC12	14	120.0	60	Micro	25	120	Passed	
G8PM-1AW7R DC12	14	75.0	60	Case Fuse	85	1,800	Passed	
G8PM-1AW7R DC12	14	111.0	60	Case Fuse	85	60	Passed	
G8PM-1AW7R DC12	14	333.0	60	Case Fuse	85	1	Passed	


Operating Voltage and Release Voltage Distributions (Number of Relays × Voltage)

Operating voltage vs ambient temperature (Cold start)



●Time Characteristic Distributions (Number of Contacts × Time (ms))

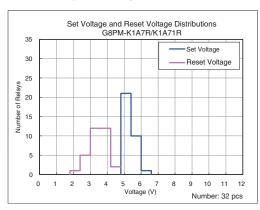


●Coil temperature rise [degC] at 20°C

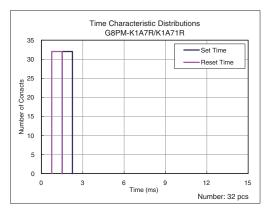
(For using under a higher ambient temperature, please select the proper current carrying condition to avoid a possible excessive temperature rising.)

Derating curve

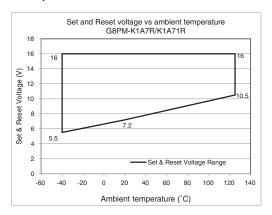
■Latching Model

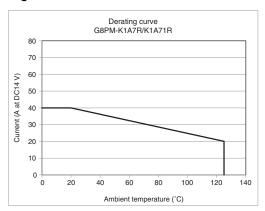

•Actual Electrical performance (reference)

Model	Application	Load voltage	Inrush current	Steady current	Break current	Inductance	Ambient temperature	Swite frequ	9	Required cycles (Min.)
		(V)	(A)	(A)	(A)	(mH)	(°C)	On (s)	Off (s)	Total
G8PM-K1A7R DC12	Resistor	14.0	40	40	40	-	20	1.0	1.0	100,000
G8PM-K1A7R DC12	Lamp	14.0	60	12	12	-	20	1.0	9.0	100,000
G8PM-K1A7R DC12	Radioator fan	14.0	50	20	20	0.4	20	2.0	6.0	100,000


Overcurrent (reference)

Model	Load & Coil voltage	Current	Fuse rating	Туре	Ambient temperature	Overcurrent time	Result
	(V)	(A)	(A)		(°C)	(s)	
G8PM-K1A7R DC12	14	54.0	40	Micro	23	3,600	Go
G8PM-K1A7R DC12	14	240.0	40	Micro	23	1	Go
G8PM-K1A7R DC12	14	46.0	40	Micro	125	1,800	Go
G8PM-K1A7R DC12	14	70.0	40	Micro	125	60	Go
G8PM-K1A7R DC12	14	206.0	40	Micro	125	1	Go


Set Voltage and Reset Voltage Distributions (Number of Relays × Voltage)


●Time Characteristic Distributions (Number of Contacts × Time)

Set and Reset voltage vs ambient temperature (Cold start)

Derating curve

Dimensions CAD Data Please visit our website, which is noted on the last page. (Unit: mm) G8PM-1AW **PCB Mounting Holes** MOUNTING (Bottom View) ORIENTATION OMRON 2-ø1.5 +0.1 HOLE MARK G8PM-2 - O 0 2-ø2.1*0.1 HOLE 2-ø2.1 ^{+0.1} HOLE RATED VOLTAGE COUNTRY OF ORIGIN Lot.No. 12.9 MAX. 14.9 MAX. (12.4TYP.) (14.4 TYP.) TOLERANCE ±0.1 *Please study & choose other appropriate hole 16.6 MAX. (16.1 TYP.) diameters if confirmed the diameter values 4-0.9 -0.95 recommended above don't work with the soldering process. Terminal Arrangement/ **Internal Connections** 2-0.5 +0.3 2-1.2 +0.3 (Bottom View) 2-1.6 +0.3 TERMINAL No.1,2 **2-0.3** ^{+0.3} _{-0.1} DIRECTION INDICATOR TERMINAL No.4.5 2-0.8 +0.3 TERMINAL No.3,6 TOLERANCE UNLESS OTHERWISE **SPECIFIED** LESS THAN 1mm : ±0.1mm NOTE: *TERMINAL 1&2 CONNECT TO +BATT 1 to 3mm: ±0.2mm 3mm OR MORE : ±0.3mm (2.15)CAD Data) is reference dimension

Precautions

●Please refer to "Safety Precautions for All Automotive Relays" for correct use.

Correct Use

- Coil Polarity for DC-operated Latching Relays
 Check the catalog for the terminal numbers and polarity of applied power to correctly connect the Relay. Applying voltage with reversed polarity to DC-operated Latching Relays may resulting malfunctions, set failure, or reset failure.
- Drive Circuit
 Energizing due to self-contact may prevent normal latching.
 Do not use Latching Relays in the following type of circuit. Use the type of circuit shown in the following figure.

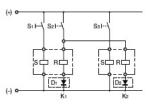
☐ b:Latching Relay

Xb :Latching Relay NC contact

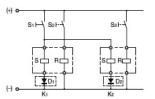
Xa :Latching Relay NO contact

S :Set coil

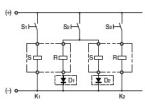
□ b:Latching Relay

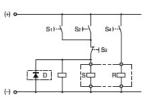

Xa :Latching Relay NO contact

- Applying Voltage Simultaneously to Set and Reset Coils
 Do not apply voltage at the same time to the set and reset coils.
 Simultaneously applying voltage to the set and reset coils for an extended period may result in abnormal coil heating, fire, or incorrect operation.
- 4. DC Input Circuit Design


Reverse voltage of a Relay coil or solenoid may cause operation failure if other Relay coils or solenoids are connected in parallel to the set coil or reset coil. As a countermeasure, change the circuit or connect diodes as shown in the following figures.

Circuit Precautions


Reset Coil Parallel Connection Circuit


Set Coil Parallel Connection Circuit

Set/Reset Coil Parallel Connection Circuit

Circuit with Other Relay Coil in Parallel to Set Coil

Please check each region's Terms & Conditions by region website.

5. Degradation over Time of Latching Relay Holding Ability If a Magnetic Latching Relay is used left set for an extended period, changes over time will degrade the magnetic force, and the reduction in holding ability may cause the set status to be released. This is also because of the properties of semi-hard magnetic material, and the rate of degradation over time depends on the ambient environment (e.g., temperature, humidity, vibration, and presence or absence of external magnetic fields). Perform maintenance at least once a year by resetting, applying the rated voltage again, and then setting.

- 6. Mounting Latching Relays
 - Operate the Latching Relay so that the vibration and shock from other devices (e.g., Relays) on the same panel or board generated when setting or resetting do not exceed the catalog values. Exceeding the values may cause the set or reset state to be released

Latching Relays are shipped in the reset status, but abnormal vibration or shock may cause them to change to the set status. Be sure to apply a reset signal before using the Latching Relay.

OMRON Corporation

Device & Module Solutions Company

Regional Contact

Americas

https://components.omron.com/us

Asia-Pacific

https://components.omron.com/ap

Korea

https://components.omron.com/kr

Europe

https://components.omron.com/eu

China

https://components.omron.com.cn

Japan

https://components.omron.com/jp

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Automotive Relays category:

Click to view products by Omron manufacturer:

Other Similar products are found below:

7-1414968-8 7-1617345-6 9-1617516-5 1393204-2 1393302-3 1432872-1 AR4-15F11-S01 AR4-15H11 1617518-5 2-1617057-2 CB1F-M-12V-H15 898H-1AH-D-001-12VDC AR4-11F11 AR4-15F11 AR4-41F11 41FZ-200ACG-BSL 5-1616920-2 5407-0011-HS CB1AF-M-12V-H59 5-1617346-8 1-1617059-9 V23134A1052X299 6-1393298-2 6-1393302-1 V23086R1801A403-EV-CBOX 897H-1AH-D-R1-U01-12VDC 871-1A-S-12VDC V23086-R1851-A502 RE031005 1393204-1 AZ9731-1C-12DC4 AZ979-1A-24D V23134A 53C643 HFKC/012-2ZST HFV4/012-1H4SGR JQC-3FF-M/012-1ZS(555) NVF4-3AZ80aDC24V1.8 NV23KCS0.57DC12V30 NVF4-1CZ30a1DC12V1.6_(40/30) NVFMCS20DC12V1.5aR NVF4-1AZ40a1DC12V1.6 NVF4-3AZ80aDC12V1.8 2383365-1 FRL-236ND100/3WR1/644F-1 FRL-236ND100/3WR18/782F-1-T HFV4-012-1Z1GR ST8N-1C-12S ST8N-2C-12S 1-1414632-0. V23134J2053X194