Relays and Switches for the

## Transportation Market Selection Guide



## OMRON Responds to IT Evolution with Four Advanced Technologies

Omron means reliable products and advanced technologies for the marketplace... Omron has developed electronic components such as relays, switches, \& connectors as well as other innovative products meeting the needs of our age.
Now, unique Omron technologies along with a worldwide supply network the promise of quality, performance, and delivery is being actualized.
To satisfy the marketplace, Omron supports global business challenges by acting as a strategic partner supporting the activities of our customers.


Four core technologies to meet customers' needs:
Investment in technology leads directly to mature expertise in the field.
This expertise enables Omron to meet the dreams of the consumer marketplace.


## Relay Line-up

Broad lineup to meet diversifying needs. Focusing on small size, little heating and high wattage relays, new relays are added.


## Application

Omron's goal is convenience, comfort and safety by providing relays and switches that meet the reliability requirements of the Transportation market while always considering the effect on the environment.

Recommended relays for each purpose and application


Recommended relays for each purpose and application

|  |  |  |  |  |  |  | amp |  |  | ateme |  | comem |  |  | - |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | and |  | \%ax | Soma |  | \% | (1) | \%osmen |  |  |  |
|  | ${ }^{\text {amm }}$ | - | - | - ${ }^{20}$ |  |  |  | - |  | - |  |  |  |  | $\bigcirc$ |  | - |
|  |  |  | 0,2 | ${ }^{12}{ }^{122}$ |  |  |  |  |  | - |  |  |  |  |  |  |  |
|  | cam | - | - 10.2 | ${ }^{12}{ }^{12}$ |  |  |  | - |  |  |  |  |  |  | $\bigcirc$ |  | $\bigcirc$ |
|  |  | - | - | - ${ }^{122}$ |  |  |  | $\bigcirc$ |  | - |  |  |  |  | 0 |  | - |
|  | $\square$ | - | - | - ${ }^{12}$ | ${ }^{2 v}$ |  |  | - |  | 0 |  |  |  |  | 0 |  | 0 |
|  | ${ }_{\text {cose }}$ | - | - | ${ }^{12 V}$ |  |  | - | 0 |  | 0 |  |  | - |  | - |  | $\bigcirc$ |
|  | wre | d | is | - ${ }^{120}$ | ${ }^{20} 0$ | 0 | - | - | - | - | - | - | $\bigcirc$ |  | - | - | - |
| + | ase | - | - | ${ }^{122}$ | ${ }^{2 v} 0$ | 0 | - | - | - | 0 | - |  | - |  | 0 | - | - |
|  | samp | - | - | - ${ }^{20}$ | ${ }^{20} 0$ |  | - | - | - |  | - | - | 0 |  | - | - | - |
|  | mex | \% | 1 | N4020 | ${ }^{20} 0$ |  | - | - | - | 0 | - | 0 | 0 | - | - | - |  |
|  | amm | , | - | ${ }^{122}$ | ${ }^{20} \mathrm{O}$ | - | - | - | - | - | - |  |  |  | - | - | - |
| \% |  | - | - | ${ }^{\text {nosama }}$ | ma | - | - | 0 | - |  | - |  |  |  | 0 | - |  |
|  | ${ }_{\text {cose }}$ | 4 | - | ${ }^{46} 120$ | ${ }^{2 v} 0$ | 0 | 0 | 0 | O | 0 | 0 |  |  |  | 0 | - |  |
|  | ${ }_{\text {camb }}$ | , | 10 | ${ }^{122}$ | ${ }^{2 v}$ | 0 | - | - | - | 0 | 0 |  |  |  | 0 | - |  |
|  | ${ }^{\infty}$ | - | - | ${ }^{40} 120$ |  | 0 | - | - | 0 | 0 | , |  |  | 0 |  | - |  |
| 8 | (amm | ma | - | - ${ }^{122}$ |  |  | - | - |  | 0 | 0 |  |  |  | - | $\bigcirc$ |  |
|  | ${ }_{\text {and }}$ | - | \% |  |  | - | 0 | 0 | 0 |  | - |  |  |  | 0 | - |  |
|  |  | L | E |  |  | - | - | - | - |  | 0 |  |  |  |  | $\bigcirc$ |  |
|  | cess | $\pm$ | moio |  |  | 0 | - | - | - |  | O | - |  |  | 0 | $\bigcirc$ |  |
|  |  | a | - ${ }^{10}$ |  |  |  | - | - | 0 |  |  |  |  |  | 0 | $\bigcirc$ |  |

## Relay Series

| Kind |  |  | Relay for PCB |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Type |  |  | G8N |  |  |  |  |  | G8ND |  |  | G8NW |  |  |  |  |  |
|  |  |  | G8N-1 | G8N-1S | G8N-1L | G8N-1H | G8N-1U | G8N-1F | G8ND-2 | G8ND-2S | G8ND-2U | G8NW-2 | G8NW-2S | G8NW-2L | G8NW-2H | G8NW-2U | G8NW-2F |
| Model |  |  | Standard | $\begin{aligned} & \text { Low } \\ & \text { operating } \\ & \text { voltage } \end{aligned}$ | High heat resistance | High heat resistance and low operating voltage | Super low operating voltage | For Lamp | Standard | $\begin{array}{\|c\|} \hline \text { Low } \\ \text { operating } \\ \text { voltage } \end{array}$ | Super low operating volage | Standard | Low operating voltage | High heat resistance | High heat resistance and low operating voltage | Low operating voltage | For Lamp |
| Appearance |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Purpose |  |  | DC motor control for transportation components |  |  |  |  | For flasher lamp | DC motor control for transportation components |  |  | DC motor control for transportation components |  |  |  |  | For flasher lamp |
| $\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\pi}{\overleftarrow{0}} \\ & \hline 0 \end{aligned}$ | Contact configuration |  | 1c(SPDT) |  |  |  |  |  | $1 \mathrm{c} \times 2($ SPDT $\times 2)(\mathrm{H}-$ Bridge $)$ |  |  | $1 \mathrm{c} \times 2(\mathrm{SPDT} \times 2)$ |  |  |  |  |  |
|  | Contact material |  | AgSn type (non-cadmium) |  |  |  |  | PdRu alloy | AgSn type (non-cadmium) |  |  |  |  |  |  |  | PdRu alloy |
|  | Rated load |  | 14 VDC 25 A Motor load |  |  |  |  | 54 W Lamp: 85 times/min | 14 VDC 25 A Motor load |  |  |  |  |  |  |  | 54 W <br> Lamp: 85 times/min |
|  | дuәuno бu!чวџ!Ms xew | $\begin{array}{r} 180 \mathrm{~A} \\ 160 \mathrm{~A} \\ 140 \mathrm{~A} \\ 120 \mathrm{~A} \\ 100 \mathrm{~A} \\ 80 \mathrm{~A} \\ 60 \mathrm{~A} \\ 40 \mathrm{~A} \\ 20 \mathrm{~A} \end{array}$ | Motor lock current 30 A |  |  |  |  |  | Motor lock current 30 A |  |  | Motor lock current 30 A |  |  |  |  |  |
|  |  | 10 A 20 A 30 A 40 A 50 A | 5 A |  |  |  |  |  | 5 A |  |  | 5 A |  |  |  |  |  |
|  | Min applicable load (Reference value) |  | 5 VDC 100 mA |  |  |  |  | 5 VDC 1 A | 5 VDC 100 mA |  |  |  |  |  |  |  | 5 VDC 1 A |
|  | Electrical (Rated load) |  | 100,000 times |  |  |  |  | 2000 hours | 100,000 times |  |  |  |  |  |  |  | 2000 hours |
|  | Mechanical |  | 1,000,000 times |  |  |  |  | $\begin{array}{c\|} \hline 10,000,000 \\ \text { times } \\ \hline \end{array}$ | 1,000,000 times |  |  |  |  |  |  |  | $\begin{gathered} 10,000,000 \\ \text { times } \\ \hline \end{gathered}$ |
| $\overline{\bar{心}}$ | Rated coil voltage |  | 12 VDC |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Coil resistant |  | $225 \Omega$ | $180 \Omega$ | $225 \Omega$ | $180 \Omega$ | $130 \Omega$ | $130 \Omega$ | $225 \Omega$ | $180 \Omega$ | $130 \Omega$ | $225 \Omega$ | $180 \Omega$ | $225 \Omega$ | $180 \Omega$ | $130 \Omega$ | $130 \Omega$ |
|  | Rated power consumption |  | 640 mW | 800 mW | 640 mW | 800 mW | 1108 mW | 1108mW | 640 mW | 800 mW | 1108mW | 640 mW | 800 mW | 640 mW | 800 mW | 1108 mW | 1108 mW |
|  | Operating voltage |  | 7.2 V or less | 6.5 V or less 7 | 7. 2 V or less ${ }^{\text {a }}$ | 6.5 V or less | 5.5 V or less | 7.2 V or less | 7.2 V or less | 6.5 V or less | 5.5 V or less | 7.2 V or less | 6.5V or less | 7.2 V or less | 6.5 V or less | 5.5 V or less | 7.2 V or less |
|  | Release voltage |  | 1.0 V or more |  |  |  | 0.8 V or more |  | 1.0 V or more 0.8 V or more |  |  | 1.0 V or more |  |  |  | 0.8 V or more |  |
|  | Between a coil and contact |  | 500 VAC: 1 minute |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Between contacts |  | 500 VAC: 1 minute |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Ambient temperature |  |  | $-40 \sim+85^{\circ} \mathrm{C}$ <br> High heat resistance: $-40 \sim+105^{\circ} \mathrm{C}$ |  |  |  |  |  | $-40 \sim+85^{\circ} \mathrm{C}$ |  |  | $-40 \sim+85^{\circ} \mathrm{C}$ <br> High heat resistance: $-40 \sim+105^{\circ} \mathrm{C}$ |  |  |  |  |  |
|  | Unsealed type (In a case) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Flux protectiontype |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Fully sealed type |  | 0 |  |  |  |  |  | 0 |  |  | $\bigcirc$ |  |  |  |  |  |
|  | Surface mountterminal |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | PCB terminal |  | 0 |  |  |  |  |  | 0 |  |  | 0 |  |  |  |  |  |
|  | Plug-in terminal |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Weight (about) |  |  | 4.0 g |  |  |  |  |  | 7.5 g |  |  | 8.0 g |  |  |  |  |  |



## Relay Series

| Kind |  |  | ISO relay |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Type |  |  | G8HL | G8HN |  |  |  |  |  | G8JN | G8JR |
|  |  |  | G8HL-1A4T-R | G8HN- | 1A2T-RJ | G8HN- | 1C2T-RJ | G8HN-1A2T-RH | G8HN-1C2T-RH | G8JN-1C2T-R | G8JR-1A2T-R |
| Model |  |  | Standard | Standard |  | Standard |  | High wattage |  | Standard | Standard |
| Appearance |  |  |  |  |  |  |  |  |  |  |  |
| Purpose |  |  | Head lamp, Blower fan, Defogger, etc. | Head lamp, Blower fan, Defogger, etc. |  |  |  |  |  | Blower fan, Defogger, etc. | Blower fan, etc. |
|  | Contact configuration |  | 1a(SPST) |  |  | 1c(SPDT) |  | 1a(SPST) | 1c(SPDT) | 1a(SPST) <br> 1c(SPDT) | 1a(SPST) |
|  | Contact material |  | AgSn type (non-cadmium) |  |  |  |  |  |  |  |  |
|  | Rated load |  | $\begin{gathered} 12 \mathrm{VDC} \\ 20 \mathrm{~A} \\ \text { Resistance load } \end{gathered}$ | $\begin{array}{\|c\|} \hline 12 \mathrm{VDC} \\ 20 \mathrm{~A} \\ \text { Resistance load } \end{array}$ | $\begin{array}{\|c\|c} \hline 24 \mathrm{VDC} \\ \text { d } \\ \text { desisiancel lad } \end{array}$ | $\begin{gathered} 12 \mathrm{VDC} \\ 20 \mathrm{~A} / 10 \mathrm{~A} \\ \text { Resistance load } \end{gathered}$ |  | $\begin{gathered} 12 \text { VDC } \\ 35 \mathrm{~A} \\ \text { Resistanceload } \end{gathered}$ | $\begin{gathered} 12 \mathrm{VDC} \\ 35 \mathrm{~A} / 20 \mathrm{~A} \\ \text { Resistance load } \\ \hline \end{gathered}$ | $\begin{gathered} 12 \mathrm{VDC} \\ 35 \mathrm{~A} / 20 \mathrm{~A} \\ \text { Resistance load } \end{gathered}$ | $\begin{gathered} 12 \mathrm{VDC} \\ 50 \mathrm{~A} \\ \text { Resistance load } \end{gathered}$ |
|  |  | $\begin{aligned} & 180 \mathrm{~A} \\ & 160 \mathrm{~A} \\ & 140 \mathrm{~A} \\ & 120 \mathrm{~A} \\ & 100 \mathrm{~A} \\ & 80 \mathrm{~A} \\ & 60 \mathrm{~A} \\ & 40 \mathrm{~A} \\ & 20 \mathrm{~A} \end{aligned}$ | Inrush current 100 A | Inrush current 100 A | Inrush current 30 A | Inrush current 100 A(NO) <br> Inrush current 30 A(NC) | Inrush current 30 A(NO | Inrush current 120 A | Inrush current 120 A(NO) | Inrush current 120 A(NO) | Inrush current 150 A |
|  |  | 10 A 20 A 30 A 40 A 50 A | $20 \mathrm{~A}$ | 20 A | 10 A | $20 \mathrm{~A}(\mathrm{NO})$ | 10A(NO) | $35 \mathrm{~A}$ | $20 \mathrm{~A}(\mathrm{NC})$ | $20 \mathrm{~A}(\mathrm{NC})$ |  |
|  | Min applicable load (Reference value) |  | 5 VDC 1 A |  |  |  |  |  |  |  |  |
| $\begin{array}{\|l\|l\|} \hline \text { Endurane } \\ \text { (Lifiene) } \end{array}$ | Electrical (Rated load) |  | 100,000 times |  |  |  |  |  |  |  |  |
|  | Mechanical |  | 1,000,000 times |  |  |  |  |  |  |  |  |
| $\overline{\bar{\circ}}$ | Rated coil | voltage | 12 VDC |  | 24 VDC | 12 VDC |  | 12 VDC |  |  |  |
|  | Coil resistant |  | Between terminals $150 \Omega$ | Between terminals $95.9 \Omega$ | Between terminals $315.1 \Omega$ | Between terminals $95.9 \Omega$ |  | Between terminals$124.2 \Omega$ |  | Between terminals $70 \Omega$ | Between terminals $62.7 \Omega$ |
|  | Rated power consumption |  | 0.96 W | 1.51 W | 1.83 W | 1.51 W |  |  | 1.16 W | 2.06 W | 2.30 W |
|  | Operating voltage |  | 8.0 V or less | 8.0 V or less | 16.0 V or less | 8.0 V or less | 16.0 V | 8.0 V or less |  |  |  |
|  | Release voltage |  | 0.7 V or more | 1.2V or more | 2.4 V or more | 1.2 V or more | 2.4V | 1.2 V or more |  | 1.0 V or more |  |
|  | Between a coil and contact |  | 500 VAC: 1 minute |  |  |  |  |  |  |  |  |
|  | Between contacts |  | 500 VAC: 1 minute |  |  |  |  |  |  |  |  |
| Ambient temperature |  |  | $-40 \sim+100^{\circ} \mathrm{C}$ | $-40 \sim+125^{\circ} \mathrm{C}$ |  |  |  |  |  |  | $-40 \sim+135^{\circ} \mathrm{C}$ |
|  | Unsealed type (In a case) |  |  | 0 |  |  |  |  |  | 0 | $\bigcirc$ |
|  | Flux protectiontype |  |  |  |  |  |  |  |  |  |  |
|  | Fully sealed type |  | 0 | $\bigcirc$ |  |  |  |  |  |  |  |
|  | Surface mountterminal |  |  |  |  |  |  |  |  |  |  |
|  | PCB terminal |  |  |  |  |  |  |  |  |  |  |
|  | Plug-in terminal |  | $\bigcirc$ | 0 |  |  |  |  |  | $\bigcirc$ | $\bigcirc$ |
| Weight (about) |  |  | 14 g | 20 g |  |  |  |  |  | 34 g | 39 g |



## Glossary: Terms related to relays

The meaning of terms used in this catalog are stated below.

## 1 Coil

## - Coil Symbol

Coil drive types are displayed as below.

| mono -stable |  |
| :---: | :---: |
| Polarized | Non-polarized |
|  |  |

## - Rated Coil Voltage

A reference voltage applied to the coil when the relay is used under the normal operating conditions.

## - Rated Coil Current

The current which flows through the coil when the rated voltage is applied at a temperature of $20^{\circ} \mathrm{C}$. The tolerance is $+15^{\circ} \mathrm{C} /$ $-20^{\circ} \mathrm{C}$ unless otherwise specified.

## - Coil Resistance

The resistance of the coil, measured at a temperature of $20^{\circ} \mathrm{C}$. A tolerance of $\pm 10 \%$ shall apply unless otherwise noted.

## Contacts

## - Contact Form

The contact mechanism of the relay.
Classification of the relay contact configuration. The most common types in automotive applications are "A-Form" (SPST) and "C-Form" (SPDT).

## - Contact Symbol

The symbol for each contact mechanism is displayed as below.

|  | a-contact | b-contact | c-contact |
| :--- | :---: | :---: | :---: |
| Contact symbol <br> in the catalog | $\boxed{4}$ | $\sqrt{4}$ |  |
| Contact symbol <br> in the JIS | - | - | - |

Note: JIS contact symbol is used in "Glossary: Terms related to relays" and
"Notice related to relays" except for special cases.

## - Contact Rating

An expression of the voltage, current, or ambient temperature (or any combination thereof) that a relay's contacts may be exposed to while being expected to retain acceptable operating characteristics.

## - Maximum Continuous Current Rating

The current that can be continuously carried through the contacts without exceeding the maximum temperature limits.

## - Maximum Switching Power

The maximum wattage that can be switched without exceeding the design parameters of the relay. Care should be taken to not exceed this value. (VA is used in the case of AC. W is used in the case of DC.)

## - Coil Power Consumption

The power dissipated by the coil when the rated voltage is applied to it. The coil power consumption is equal to the Rated Coil Voltage multiplied by the Rated Coil Current.

- Pull In Voltage (Must Operate Voltage)

The minimum coil voltage required to pull-in the relay contacts at a temperature of $20^{\circ} \mathrm{C}$.

## - Drop Out Voltage (Release Voltage)

The minimum coil voltage at which a relay's contacts will dropout at a temperature of $20^{\circ} \mathrm{C}$.

## - Hot Start

The Minimum Operate Voltage when measured immediately following a pre-determined operating condition

## - Voltage Range

The region of safe operating potential applied to the coil.

## - Maximum Continuous Coil Voltage

The voltage that can be continuously applied to the coil without exceeding the maximum temperature limits.

## - Contact Resistance

The total electrical resistance of a pair of closed contacts measured at their associated contact terminals. The contact resistance values in this catalog are initial rated values; therefore they are not an indicator of pass or fail after actual use in the application circuitry.
Contact resistance is determined by measuring the voltage drop across the contacts using the appropriate test current shown below.

Contact Resistance $\frac{E}{I}(\Omega)\left(\begin{array}{l}\text { DC measurements are obtained by } \\ \text { testing with alternating polarities and } \\ \text { adopting the mean value. }\end{array}\right)$
Contact Resistance Test Current


## - Maximum Contact Voltage

The maximum value of contact voltage that the contact can withstand. Do not apply a voltage that exceeds the maximum contact voltage of the relay.

## - Maximum Switching Current (contact)

The maximum value of the contact current that the contact can safely switch. Do not apply a current that exceeds the maximum contact switching rating of the relay (this includes inrush.)

## Glossary: Terms related to relays

## 3 Electrical Characteristics

## - Operate Time

The time that elapses between the instant power is applied to a relay coil and the moment the contacts have closed. In case the relay has several contacts, the duration of the operate time shall be considered to end when the last contact has closed unless otherwise specified. Release time is always specified at $20^{\circ} \mathrm{C}$ unless otherwise noted. Operate bounce time is not included in the operate time of a relay.


## - Release Time

For an SPDT relay, the release time is the time that elapses between the instant a relay coil is de-energized, and closure of the NC contacts.
For an SPST relay, the release time concludes at the opening of the NO contacts. Release time is specified at $20^{\circ} \mathrm{C}$ unless otherwise noted. Release bounce time is not included in the release time of a relay.

## - Bounce

Intermittent opening and closing of contacts caused by vibration or shock resulting from the collision of the relay's moving parts.

## Operate Bounce Time

The time interval between the initial closure of the NO contact and when the bounce ceases.

## Release Bounce Time

The time interval between the initial closure of the NC contact and when the bounce ceases.

## - Insulation Resistance

The resistance between any two electrically conductive parts within the relay that are intended to be electrically isolated from each other.

Typical examples would include:

1. Between the coil and contact: Between the coil terminal and all contact terminals
2. Between contacts of a different polarity: Between contact terminals of a different polarity
3. Between contacts of the same polarity: Between contact terminals of the same polarity

## - Dielectric Strength

The ability of electrically isolated parts within the relay to withstand high voltage applied across them without arcing. Typically, an acceptable leakage current is established at a particular voltage for a specified duration.

## 4 Mechanical Characteristics

## - Vibration Resistance

Vibration resistance of a relay is characterized by two values:
Malfunction Durability, refers to the maximum vibration the relay can withstand without changing state (vibration doesn't cause closed contacts to open or open contacts to close).

Mechanical Durability, refers to the maximum vibration the relay can withstand without causing it to permanently change its operating characteristics.

## -Shock Resistance

Shock Resistance of a relay is characterized by two values:
Malfunction Durability, refers to the maximum shock the relay can withstand without changing state (vibration doesn't cause closed contacts to open or open contacts to close.)

Mechanical Durability, refers to the maximum shock the relay can withstand without causing it to permanently change its operating characteristics.

## Endurance (Lifetime)

## - Mechanical Endurance (Lifetime)

The number of operations the relay can successfully complete without any electrical load.

## - Electrical Endurance (Lifetime)

The number of operations the relay can successfully complete with the rated load applied. Electrical endurance is not indicative of relay performance for loads other than the rated load.

## - Minimum Carry or Switching Current

The smallest acceptable value of carry or switching current that maintains reliable electrical performance of the contacts.

## - Maximum Operating Frequency

The maximum frequency at which the relay coil may be energized and de-energized while maintaining consistent and predictable operation.

## 6 Ambient Temperature Range (When using, transporting and storing the relay)

The temperature limits under which the relay can predictably operate are indicated on the data sheet. However, any freezing condition is excluded.
This does not guaranteed to meet the values given on the data sheet for the entire operating temperature range.

## Glossary: Terms related to relays

## 7 Contour and Shape

## - Contour Dimension

## Relay for automobile PCB

For miniature relays, dimensions (either nominal or maximum) are provided to aid the customer in the design process.


## General purpose relay

Maximum dimensions are shown as a reference for design.

## - Marking

Various markings are used such as relay type, voltage rating, internal connection diagram, etc. Because of space restrictions on the surface of smaller relays, they may not display all of the information found on larger relays.

## - Mounting Orientation Mark

The top of all Omron relays are marked to indicate the location of the relay coil. Knowing the terminal location aids in designing PCB patterns, and when spacing components. Also, the printing makes it easy to discern pin orientation when automatic or handmounting the relay.

Mounting orientation


|  | PCB processing dimension | Terminal layout/Internal Connection |
| :---: | :---: | :---: |
| Symbol | -- | $7 A$ |
| Example |  | Directional mark <br> (BOTTOM VIEW) |

Note: In a contour dimensional drawing, PCB process dimensional drawing or terminal layout/internal connection diagram, the directional mark is found on the left. JIS contact symbol is not inscribed to match with case marking.

## - Terminal Layout/Internal Connection

(1) Bottom View

When a relay's terminals can not be seen from top view (such as in the example below), the BOTTOM VIEW is shown in the catalog.

(2) Rotation direction to BOTTOM VIEW

The bottom view shown in the catalog or data sheet is rotated in the direction indicated by the arrow, with the coil always on the left.


## Swith Series

## Technical Considerations

Omron Electronic Components has a great variety of standard options. We can deliver a snap action switch that will drop right into your application. Saving you time, component counts, \& cost while improving your products overall quality.

## These options include:

## Actuators:

- Long \& short panel mount plungers
- Long \& short spring plungers
- Hinge levers in various lengths \& orientation
- Roller levers in various lengths \& orientations
- Simulated roller
- Leaf


## Termination styles:

- PCB
- Solder
- Quick Connect
- Screw
- Wire Leads
- Connector


## Additional Features:

- Sealed / Unsealed versions available.
- Class N (200C) types available. (D3V-T)

Contact Omron Components and have it your way. Configure a switch that meets your application needs.

## Switich Series

|  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | D2HW | D2JW | D2FW-G | D2VW |
| Dimensions mm (in) | $\begin{aligned} & 7 \mathrm{H} \times 5.3 \mathrm{D} \times 13.3 / 18.5 \mathrm{~W} \\ & (0.28 \times 0.21 \times 0.52 / 0.73) \end{aligned}$ | $\begin{aligned} & 9.4 \mathrm{H} \times 5.3 \mathrm{D} \times 12.7 \mathrm{~W} \\ & (0.37 \times 0.21 \times 0.50) \end{aligned}$ | $\begin{aligned} & 13.5 \mathrm{H} \times 8.0 \mathrm{D} \times 23.5 \mathrm{~W} \\ & (0.53 \times 0.31 \times 0.93) \end{aligned}$ | $\begin{aligned} & 15.9 \mathrm{H} \times 10.3 \mathrm{D} \times 33 \mathrm{~W} \\ & (0.63 \times 0.41 \times 1.29) \end{aligned}$ |
| Features | - Subminiature Snap Action Switch <br> - Small sealed switch with long stroke for reliable ON/OFF action <br> - Conforms to IP67 | - Small size <br> - Gold crossbar contact and coilspring for long life <br> - IP67 rating for molded lead wire versions | - Subminiature Snap Action Switch <br> - Small sealed switch with lead wires <br> - Conforms to IP67 | - MiniatureSnapActionSwitch <br> - Sealed water-tight switch conforms to IP67 \& IP68 |
| Contact Rating(s) Resistive load | 2A @ 12VDC/ 1A @ 24VDC/ 0.5A @ 42VDC | 0.1A @ 30VDC | 0.5A @ 30VDC or 50mA @ 30VDC | 0.1A@125VACor5A@125/250VAC |
| Contact form | SPDT, SPST-NC, SPST-NO | SPDT | SPDT, SPST-NC, SPST-NO | SPDT (SPST-NC, SPST-NO per request) |
| Operating force (OF)* | 76 g | 250 g | 120 g | 200g |
| Mechanical service life | 1,000,000 operations min. | 1,000,000 operations min. | 300,000 operations min. | 10,000,000 operations min. |
| Electrical service life | 100,000 operations min. | 500,000 operations min. | 100,000 operations min. | 1,000,000 operations min. (0.1A, 125VAC) 100,000 operations min. (3A, 125/250VAC) |
| Mounting pitch mm (in) | 8 (0.32) posts, 13 (0.51) screw | 4.8 | 16 (0.63) | $10.3 \times 22.2(0.41 \times 0.87)$ |
| Actuator types | Pin plunger, hinge lever, long hingelever,simulatedrollerlever, leaf lever, simulated leaf lever, long leaf lever | Pin plunger, short hinge lever, hingelever,simulatedrollerlever, hinge roller lever | Leaf lever, Long leaf lever | Pin plunger, short hinge lever, hinge lever, long hinge lever, simulatedrollerlever,shorthinge roller lever, hinge roller lever |
| Terminal choices | PCB (straight, angled), Solder, Lead wire (bottom, right side, left side) | Solder, molded lead wire | Lead wires | Solder/Quick connect (\#187 tab terminals) lead wires |
| Approved standards | UL, CSA | UL, CSA, VDE | - | UL, CSA (refer to "Ratings" section of data sheet) |

* Values are for pin plunger type only


## Swith Series

|  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |

* Values are for pin plunger type only

> *at rated OT value
**at rated load

|  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |

* Values are for pin plunger type only


## World-Wide Headquarter Locations

## Japan - World Headquarters <br> Japan <br> OMRON ELECTRONIC COMPONENTS <br> Kyoto Head Office

Shiokoji Horikawa, Shimogyo-ku, Kyoto, 600-8530
Japan - Tel : 81-75-344-7000 Fax : 81-75-344-7001

## Europe

OMRON ELECTRONIC COMPONENTS
EUROPE B.V.
(OCB-EU-Benelux)
Wegalaan 57, 2132 JD Hoofddorp
The Netherlands - TEL : 31-23-568-1200 FAX : 31-23-568-1212

## Asia-Pacific <br> SINGAPORE

OMRON ELECTRONIC COMPONENTS PTE LTD. (OCB-SG)
750B Chai Chee Road \#01-02 Technopark@Chai Chee Singapore 469002 - TEL : 65-7446-7400 FAX : 65-6446-7411

## China

HONG KONG
OMRON ELECTRONIC COMPONENTS (HONG KONG) LTD.
(ОСВ-HK)
Unit 601-9, Tower 2, Th Gateway No.25, Canton Road, Tsimshatsui, Kowloon
Hong Kong - TEL : 852-2375-3827 FAX : 852-2375-1475

## CHINA

OMRON ELECTRONIC COMPONENTS
TRADING (SHANGHAI) LTD. SHANGHAI OFFICE (OCB-CN(SH))
Rm2503, Raffles City Shanghai (Office Tower), No. 268 Xi Zang Middle Road, Huang Pu District, Shanghai, 200001
China - TEL : 86-21-6340-3737 FAX : 86-21-6340-3757

## The Americas

U.S.A. / Canada / Brazil - HQ

OMRON ELECTRONIC COMPONENTS LLC
(OCB-AM)
55 East Commerce Drive, Suite B, Illinois, 60173
U.S.A. - TEL : 1-847-882-2288 FAX : 1-847-882-2192

# Omron Electronic Components: The Quality, Flexibility and Global Support You Need 

## For More Detailed Information... Visit Us Online: <br> www.components.omron.com

- Browse Omron's full range of product information and selection guides.
- Search the cross-reference database to locate Omron component solutions.
- Download PDF data sheets, brochures and more.
- Locate a Distributor and search for available inventory.
- Complete Terms and Conditions of Sale and Usage.

Call Us:
1-847-882-2288 Monday through Friday, 7:30 a.m. to 6:00 p.m. Central Time (CT) Email Us:
components@omron.com

## OMRON ELECTRONIC COMPONENTS LLC

55 Commerce Drive, Schaumburg, IL 60173 U.S.A.
Omron leads the world in advanced relay production and quality, assuring reliable performance, and ready stock wherever you manufacture. With 75 years of experience, we continue to apply the latest technologies to offer you smaller, faster and more efficient components for a wide range of applications. Our global network of sales and technical support can also provide a full line of advanced micro sensors, photomicrosensors, electromechanical switches and flexible PCB connectors.

## REQUIRED PRECAUTIONS

It is the buyer's sole responsibility to ensure that any omron product is fit and sufficient for use in a motorized vehicle application. Buyer shall be solely responsible for determining appropriateness of the particular product with respect to the buyer's application, end product, or system. Buyer shall take the application responsibility in all cases, but the following is a non-exhaustive list of applications for which particular attention must be given:
(i) Outdoor use; uses involving potential chemical contamination or electrical interference, or conditions or uses not described in this document.
(ii) Use in consumer products or any use in significant quantities.
(iii) Energy control systems, combustion systems, railroad systems, aviation systems, medical equipment, amusement machines, vehicles, safety equipment, and installations subject Energy control systems, combustion systems, ra
to separate industry or government regulations.
(iv) Systems, machines, and equipment that could present a risk to life or property.

Never use the product for an application involving serious risk to life or property or in large quantities without ensuring that the end product as a whole has been designed to address Never use the product for an application involving serious risk to ife or property or in large quen
relevant risks, and that the omron product is properly rated and installed for its intended use.

```
J800-E-02
O2009 Omron Electronic Components, Printed in U.S.A.
2/2009
```


## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Automotive Relays category:
Click to view products by Omron manufacturer:

Other Similar products are found below :
7-1414968-8 7-1617345-6 9-1617516-5 G5CE1ASIDC12 1393204-2 1393302-3 13Z99A115-0074 1432872-1 AR4-15F11-S01 AR4-15H11 1617057-2 1617058-6 1617518-5 2-1617057-2 2-1617057-6 2-1617058-3 CB1F-M-12V-H15 898H-1AH-D-001-12VDC AR4-11F11 AR4-15F11 AR4-41F11 24198-1 4-1617057-0 41FZ-200ACG-BSL 5-1616920-2 5-1617052-9 5407-0011-HS CB1AF-M-12V-H59 5-1617346-8 103-1AH-C-12VDC V23134A1052X299 6-1393302-1 897H-1AH-D-R1-U01-12VDC FTR-P3CP024W1-06 1-1617057-8 3-1393305-1 5436-0001-HS V23086-R1851-A502 V23136-A0004-X075 898H-1AH-D1SW-R1-12VDC RH4C1P2607 RE031005 V23134M0052G242 23234B0001X001-EV-144 2-1904020-1 V23134B0052C642 V23134B0053C642 V23234-A1001-X036 2138602-1 3-1904020-8

