DC Power Relays (25-A Models)

DC Power Relays Capable of Interrupting

High-voltage, High-current DC Load

- Utilizes a unique gas-filled, fully sealed, non-ceramic construction achieved by using resin with a metal case. This reduces the need for special processing and materials that were required with previous models, resulting in a low-cost relay that is both compact and lightweight.
- Smallest and lightest in its class at $25 \times 60 \times 58 \mathrm{~mm}$ and approximately 135 g . This is approximately half the volume and a third of the weight of other DC Power Relays in the same class (400 VDC, 25 A).*
- The unique design of the contact switching component and permanent magnet for blowing out the arc eliminates the need for polarity in the main circuit (contact terminal). This improves ease of wiring and installation, and contributes to providing failsafe measures against incorrect
 wiring.
* Based on our investigation as of December 2004.

RoHS Compliant

Refer to "DC Power Relays Common Precautions".
Model Number Legend

G9EB- $\frac{\square-}{1} \frac{\square}{2}-\frac{\square}{3} \frac{\square}{4}$
3. Coil Terminals

B: M4 screw terminals

4. Special Functions
 2. Contact Form

Blank: SPST-NO

List of Models

Models	Terminals		Contact form	Coil rated voltage	Model
	Coil terminals	Contact terminals			
				24 VDC	
Switching/current					
conduction models	Screw terminals	Screw terminals	SPST-NO	48 VDC	G9EB-1-B

Note 1. Two M4 screws are provided for the contact terminal connection.
Note 2. Two M4 screws are provided for the coil terminal connection.

Ratings

-Coil

Rated voltage Item	Rated current (mA)	Coil resistance (Ω)	Must-operate voltage (V)	Must-release voltage (V)	Maximum voltage (V)	Power consumption (W)
12 VDC	166.7	72	75% max. of rated voltage	10% min. of rated voltage	130% of rated volt-age (at $23^{\circ} \mathrm{C}$ within 10 minutes)	Approx. 2
24 VDC	83.3	288				
48 VDC	41.7	1,152				
60 VDC	33.3	1,800				
100 VDC	20	5,000				

Note 1. The figures for the rated current and coil resistance are for a coil temperature of $23^{\circ} \mathrm{C}$ and have a tolerance of $\pm 10 \%$.
Note 2. The figures for the operating characteristics are for a coil temperature of $23^{\circ} \mathrm{C}$.
Note 3. The figure for the maximum voltage is the maximum voltage that can be applied to the relay coil.

-Contacts

Item	Resistive load
	G9EB-1(-B)
Rated load	25 A at 250 VDC
Rated carry current	25 A
Maximum switching voltage	250 V
Maximum switching current	25 A

Characteristics

Item Model		G9EB-1(-B)
Contact resistance *1		$30 \mathrm{~m} \Omega$ max.
Contact voltage drop		0.1 V max. (for a carry current of 25 A)
Operate time		30 ms max .
Release time		15 ms max.
Insulation resistance *2	Between coil and contacts	1,000 M 2 min .
	Between contacts of the same polarity	1,000 M 2 min.
Dielectric strength	Between coil and contacts	2,500 VAC, 1 min
	Between contacts of the same polarity	2,500 VAC, 1 min
Impulse withstand voltage *3		4,500 V
Vibration resistance	Destruction	10 to 55 to $10 \mathrm{~Hz}, 0.75-\mathrm{mm}$ single amplitude (Acceleration: 2.94 to $88.9 \mathrm{~m} / \mathrm{s}^{2}$)
	Malfunction	10 to 55 to $10 \mathrm{~Hz}, 0.75-\mathrm{mm}$ single amplitude (Acceleration: 2.94 to $88.9 \mathrm{~m} / \mathrm{s}^{2}$)
Shock resistance	Destruction	$490 \mathrm{~m} / \mathrm{s}^{2}$
	Malfunction	$100 \mathrm{~m} / \mathrm{s}^{2}$
Mechanical endurance *4		100,000 operations min.
Electrical endurance (resistive load) *5 *6		250 VDC, 25 A, 30,000 ops. min.
Short-time carry current		50 A (5 min), 40 A (10 min)
Maximum interruption current *6		100 A at 250 VDC (5 times)
Overload interruption *6		50 A at 250 VDC (50 times min.)
Ambient operating temperature		-40 to $70^{\circ} \mathrm{C}$ (with no icing or condensation)
Ambient operating humidity		5\% to 85\% RH
Weight (including accessories)		Approx. 135 g

Note. The above values are initial values at an ambient temperature of $23^{\circ} \mathrm{C}$ unless otherwise specified.
*1. The contact resistance was measured with 1 A at 5 VDC using the voltage drop method.
G *2. The insulation resistance was measured with a 500-VDC megohmmeter.
$9{ }^{*} 3$. The impulse withstand voltage was measured with a JEC-212 (1981) standard impulse voltage waveform ($1.2 \times 50 \mu \mathrm{~s}$)
E *4. The mechanical endurance was measured at a switching frequency of 3,600 operations $/ \mathrm{hr}$.
*5. The electrical endurance was measured at a switching frequency of 60 operations $/ \mathrm{hr}$.
*6. These values are for when a varistor is used as the protective circuit against reverse surge in the relay coil. Using a diode will reduce theswitching characteristics.

Engineering Data

G9EB-1-B Switching/Current Conduction Models

- Maximum Switching Capacity

- Carry Current vs Energizing Time

- Vibration Malfunction

- Shock Malfunction

The value at which malfunction occurred was measured after applying shock to the test piec 3 times each in 6 directions along 3 axes

Electrical Endurance (Switching Performance)

- Must-operate Voltage and Must-release Voltage Distributions

- Vibration Resistances

Shock Resistance
chacteristics were measured after applying a shock
of $490 \mathrm{~m}^{2} / \mathrm{s}$ to the test piece 3 times each in 6
directions along 3 axes. The percentage rate of
change is the average value for all of the samples.

- Electrical Endurance (Interruption Performance)

- Time Characteristic Distributions

IDimensions (Unit: mm)

- Screw Terminal Type

G9EB-1-B

Dimension (mm)	Tolerance (mm)
10 or lower	± 0.3
10 to 50	± 0.5
50 or higher	± 1

Terminal Arrangement/ Internal Connections (TOP VIEW)

Mounting Hole Dimensions

 (TOP VIEW)

Note: Do not use this document to operate the Unit.

OMRON Corporation

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for General Purpose Relays category:
Click to view products by Omron manufacturer:

Other Similar products are found below :
PCN-105D3MH,000 59641F200 LY1SAC110120 5X827E 5X837F 5X840F 5X842F 5X848E LY2N-AC120 LY2S-AC220/240 LY2-US-
AC120 LY3-US-AC120 LY4F-UA-DC12 LY4F-UA-DC24 LY4F-US-AC120 LY4F-US-AC240 LY4F-US-DC24 LY4F-VD-AC110
LYQ20DC12 M115C60 M115N010 M115N0150 6031007G 603-12D 61211T0B4 61212T400 61222Q400 61243B600 61243C500
61243Q400 61311BOA2 61311BOA6 61311BOA8 61311C0A2 61311COA1 61311COA6 61311F0A2 61311QOA1 61311QOA4
$\underline{61311 \mathrm{~T} 0 \mathrm{D} 6} \underline{61311 \mathrm{TOA} 6} \underline{61311 \mathrm{TOA} 7} \underline{61311 \mathrm{TOB} 3} \underline{61311 \mathrm{TOB} 4} \underline{61311 \mathrm{U} 0 \mathrm{~A} 6} \underline{61312 \mathrm{Q} 600} \underline{61312 \mathrm{~T} 400} \underline{61312 \mathrm{~T} 600} \underline{61313 \mathrm{U} 200} \underline{61313 \mathrm{U} 400}$

