DC Power Relays (200-A Models)

DC Power Relays Capable of Interrupting High-voltage, High-current Loads

- A compact relay ($98 \times 44 \times 86.7 \mathrm{~mm}(\mathrm{~L} \times \mathrm{W} \times \mathrm{H})$) capable of switching 400-V 200-A DC loads. (Capable of interrupting 1,000 A at 400 VDC max.)
- The switching section and driving section are gas-injected and hermetically sealed, allowing these compact relays to interrupt high-capacity loads. The sealed construction also requires no arc space, saves space, and helps ensure safe applications.
- Downsizing and optimum design allow no restrictions on the mounting direction.

- Terminal Cover is also available for industrial applications.
- UL/CSA standard UL508 approved.

RoHS Compliant

Refer to "DC Power Relays Common Precautions".

Model Number Legend

G 9MC- $\square-\square-\square-\square$	1. Number of Poles	3. Coil Terminals
$\frac{1}{2} \frac{\square}{3} \frac{\square}{4}$	1:1 pole	B 3.5 screw terminals (standard)
	2. Contact Form	Blank: Lead wire output
	Blank: SPST-NO	4. Special Functions

List of Models

Models	Terminals		Contact form	Coil rated voltage	Model
	Coil terminals	Contact terminals			
Switching/current conduction models	Screw terminals	Screw terminals	SPST-NO	$12 \text { VDC }$ $24 \text { VDC }$ 48 VDC	G9EC-1-B
	Lead wire			$\begin{array}{r} 60 \text { VDC } \\ 100 \text { VDC } \end{array}$	G9EC-1

Note 1. Two M8 nuts are provided for the contact terminal connection.
Note 2. Two M3.5 screws are provided for the coil terminal connection.

Ratings

-Coil

Rated voltage	Rated current (mA)	Coil resistance (Ω)	Must-operate voltage (V)	Must-release voltage (V)	Maximum voltage (V)	Power consumption (W)
12 VDC	938	12.8				
24 VDC	469	51.2				
48 VDC	234	204.8	75% max. of rated voltage	8% min. of rated voltage	110% of rated voltage (at $23 \cdot C$ within 10 minutes $)$	Approx. 11

Note 1. The figures for the rated current and coil resistance are for a coil temperature of $23^{\circ} \mathrm{C}$ and have a tolerance of $\pm 10 \%$.
Note 2. The figures for the operating characteristics are for a coil temperature of $23^{\circ} \mathrm{C}$.
Note 3. The figure for the maximum voltage is the maximum voltage that can be applied to the relay coil.

-Contacts

Item	Resistive load
	G9EC-1(-B)
Rated load	200 A at 400 VDC
Rated carry current	200 A
Maximum switching voltage	400 V
Maximum switching current	200 A

Characteristics

Item Model		G9EC-1(-B)
Contact resistance *1		$30 \mathrm{~m} \Omega$ max. (0.2 m Ω typical)
Contact voltage drop		0.1 V max. (for a carry current of 200 A)
Operate time		50 ms max.
Release time		30 ms max.
Insulation resistance *2	Between coil and contacts	1,000 $\mathrm{M} \Omega \mathrm{min}$.
	Between contacts of the same polarity	1,000 M Ω min.
Dielectric strength	Between coil and contacts	2,500 VAC, 1 min
	Between contacts of the same polarity	2,500 VAC, 1 min
Impulse withstand voltage *3		4,500 V
Vibration resistance	Destruction	10 to 55 to $10 \mathrm{~Hz} 0.75-\mathrm{mm}$ single amplitude (Acceleration: 2.94 to $88.9 \mathrm{~m} / \mathrm{s}^{2}$)
	Malfunction	10 to 55 to $10 \mathrm{~Hz} 0.75-\mathrm{mm}$ single amplitude (Acceleration: 2.94 to $88.9 \mathrm{~m} / \mathrm{s}^{2}$)
Shock resistance	Destruction	$490 \mathrm{~m} / \mathrm{s}^{2}$
	Malfunction	$196 \mathrm{~m} / \mathrm{s}^{2}$
Mechanical endurance *4		200,000 operations min.
Electrical endurance (resistive load) *5		400 VDC, $200 \mathrm{~A}, 3,000$ operations min.
Short-time carry current		$300 \mathrm{~A}(15 \mathrm{~min})$
Maximum interruption current		1,000 A at 400 VDC (10 times)
Overload interruption		700 A at 400 VDC (40 times min.)
Reverse polarity interruption		-200 A at 200 VDC (1,000 times min.)
Ambient operating temperature		-40 to $50 \bullet$ (with no icing or condensation)
Ambient operating humidity		5\% to 85\%
Weight (Including accessories)		Approx. 560 g

Note. The above values are initial values at an ambient temperature of $23^{\circ} \mathrm{C}$ unless otherwise specified.
*1. The contact resistance was measured with 1 A at 5 VDC using the voltage drop method.
*2. The insulation resistance was measured with a 500 -VDC megohmmeter.
*3. The impulse withstand voltage was measured with a JEC-212 (1981) standard impulse voltage waveform ($1.2 \times 50 \mu \mathrm{~s}$)
*4. The mechanical endurance was measured at a switching frequency of 3,600 operations/hr.
*5. The electrical endurance was measured at a switching frequency of 60 operations $/ \mathrm{hr}$.

Engineering Data

G9EC-1(-B) Switching/Current Conduction Models

Maximum Switching Capacity

-Carry Current vs Energizing Time

-Vibration Malfunction

-Shock Malfunction

-Electrical Endurance (Switching Performance)

-Must-operate Voltage and Must-release Voltage Distributions

- Vibration Resistance

Shock Resistance

- Electrical Endurance (Interruption Performance)

-Time Characteristic Distributions

Dimensions (Unit: mm)

-Models with Screw Terminals

G9EC-1-B

Terminal Arrangement/ Internal Connections (TOP VIEW)

Note: Be sure to connect terminals with the correct polarity. Coils do not have polarity.

Mounting Hole Dimensions (TOP VIEW)

Two, M6 or 6.5-dia. holes

-Models with Lead Wires

Terminal Arrangement/ Internal Connections
(TOP VIEW)

Note: Be sure to connect terminals with the correct polarity. Coils do not have polarity.

Mounting Hole Dimensions (TOP VIEW)

Two, M6 or 6.5-dia. holes

Options (Unit: mm)

- Terminal Cover

P9EC-C

* Dimensions of cutout for wiring.

Note: Be sure to remove the cutouts for wiring that are located in the wiring outlet direction before installing the Terminal Cover

Dimension (mm)	Tolerance (mm)
10 or lower	± 0.3
10 to 50	± 0.5
50 or higher	± 1

[^0]Note: Do not use this document to operate the Unit.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for General Purpose Relays category:
Click to view products by Omron manufacturer:

Other Similar products are found below :
PCN-105D3MH,000 59641F200 LY1SAC110120 5X827E 5X837F 5X840F 5X842F 5X848E LY2N-AC120 LY2S-AC220/240 LY2-US-
AC120 LY3-US-AC120 LY4F-UA-DC12 LY4F-UA-DC24 LY4F-US-AC120 LY4F-US-AC240 LY4F-US-DC24 LY4F-VD-AC110
LYQ20DC12 M115C60 M115N010 M115N0150 6031007G 603-12D 61211T0B4 61212T400 61222Q400 61243B600 61243C500
61243Q400 61311BOA2 61311BOA6 61311BOA8 61311C0A2 61311COA1 61311COA6 61311F0A2 61311QOA1 61311QOA4
$\underline{61311 \mathrm{~T} 0 \mathrm{D} 6} \underline{61311 \mathrm{TOA} 6} \underline{61311 \mathrm{TOA} 7} \underline{61311 \mathrm{TOB} 3} \underline{61311 \mathrm{TOB} 4} \underline{61311 \mathrm{U} 0 \mathrm{~A} 6} \underline{61312 \mathrm{Q} 600} \underline{61312 \mathrm{~T} 400} \underline{61312 \mathrm{~T} 600} \underline{61313 \mathrm{U} 200} \underline{61313 \mathrm{U} 400}$

[^0]: - Application examples provided in this document are for reference only. In actual applications, confirm equipment functions and safety before using the product.
 - Consult your OMRON representative before using the product under conditions which are not described in the manual or applying the product to nuclear control systems, railroad systems, aviation systems, vehicles, combustion systems, medical equipment, amusement machines, safety equipment, and other systems or equipment that may have a serious influence on lives and property if used improperly. Make sure that the ratings and performance characteristics of the product provide a margin of safety for the system or equipment, and be sure to provide the system or equipment with double safety mechanisms.

