AC Power Latching Relay

60 A High power latching relay

- High power switching, Compact size
- High magnetic latching force provides vibration resistance
- Low contact resistance
- PCB terminals type available
- Conforms to UL 508 (Except PCB terminals type)

RoHS Compliant

Model Number Structure

G9TA- $\square \frac{1}{1} \frac{A}{3} \frac{\square}{4}$
Application Examples

- Smart Meter	- Lighting control
- PV Inverter	- EV Charger

1. Relay Function
2. Number of poles

U: Single-winding latching
K: Double-winding latching

1: 1-Pole
3. Contact Form
4. Terminal shape
A. SPST-NO

TH: M5 securing screw
TW: Welding terminals
P : PCB terminals

Ordering Information

Classification	Contact Form	Terminal Shape	Enclosure rating	Model	Rated coil voltage	Minimum packing unit
Single coil	SPST-NO	M5 securing screw	Flux protection	G9TA-U1ATH	12 VDC	25 pcs/tray
		Welding terminals		G9TA-U1ATW		
		PCB terminals		G9TA-U1AP		
Double coils		M5 securing screw		G9TA-K1ATH	12 VDC	
		Welding terminals		G9TA-K1ATW		
		PCB terminals		G9TA-K1AP		

Note. When ordering, add the rated coil voltage to the model number.
Example: G9TA-U1ATH DC12
Rated coil voltage
However, the notation of the coil voltage on the product case as well as on the packing will be marked as[][] VDC.

Ratings

- Coil

Single-winding Latching Type

Rated Voltage	Item (V)	Rated current (mA)	Coil resistance (Ω)	Must set voltage	Must reset voltage	Max. voltage	Power consumption	
				\% of rated voltage			Set coil (W)	Reset coil (W)
DC	12	83	145	80\% max.	80\% max.	110\% max.		x. 1.0

Double-winding Latching Type

Rated Voltage	Item(V)	Rated current (mA)		Coil resistance (Ω)		Must set voltage	Must reset voltage	Max. voltage	Power consumption	
		Set coil	Reset coil	Set coil	Reset coil		\% of rated voltage		Set coil (W)	Reset coil (W)
DC	12	217	217	55	55	80\% max.	80\% max.	110\% max.	Approx. 2.6	Approx. 2.6

Note 1. The rated current and coil resistance were measured at a coil temperature of $23^{\circ} \mathrm{C}$ with tolerances of $\pm 10 \%$.
Note 2. The operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$.
Note 3. The maximum permissible voltage is the maximum value of the fluctuation range for the Relay coil operating power supply and was measured at an ambient temperature of $23^{\circ} \mathrm{C}$.

- Contacts

Item $\begin{aligned} & \text { Model } \\ & \text { Load }\end{aligned}$	G9TA-U1A $\square /$ G9TA-K1A \square	
	Resistive load	Inductive load (PF=0.5)
Contact type	SPST-NO	
Contact material	Ag Alloy	
Rated load	60 A at 250 VAC	
Rated carry current	60 A	
Max. switching voltage	250 VAC	
Max. switching current	60 A	

Characteristics

Item		G9TA-U1A \square	G9TA-K1A \square
Contact resistance *1		$2 \mathrm{~m} \Omega$ max.	
Set time *2		30 ms max.	20 ms max.
Reset time *2		30 ms max.	20 ms max.
Minimum pulse width		100 ms	
Maximum pulse width		1,000 ms	
Insulation resistance *3		1,000 M 2 min .	
Dielectric strength	Between coil and contacts	4,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min	
	Between contacts of the same polarity	1,500 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min	
Impulse withstand voltage	Between coil and contacts	6 kV	
Vibration resistance	Destruction	10 to 150 to $10 \mathrm{~Hz}, \mathrm{f}<60 \mathrm{~Hz}$: Constant amplitude $0.075 \mathrm{~mm}, \mathrm{f}>60 \mathrm{~Hz}$: Constant acceleration $9.8 \mathrm{~m} / \mathrm{s}^{2}$	
	Malfunction	10 to 55 to $10 \mathrm{~Hz}, 0.75 \mathrm{~mm}$ single	double amplitude)
Shock resistance	Destruction	1,000 m/s ${ }^{2}$	
	Malfunction	$100 \mathrm{~m} / \mathrm{s}^{2}$	
Durability	Mechanical	100,000 operations min. (at 7,200 operations/h)	
	Electrical *4	5,000 operations, resistive load and then 5,000 operations, inductive load ($\mathrm{PF}=0.5$) (operation: ON for 10 sec , OFF for 20 sec) *5	
Ambient operating temperature		-40 to $85^{\circ} \mathrm{C}$ (with no icing or condensation)	
Ambient operating humidity		5 to 85\%	
Weight		Approx. 42 g	

Note. The values given above are initial values.
A *1. Measurement conditions: 24 VDC, 1 A, voltage drop method.
*2. Measurement conditions: Rated operating voltage applied, not including contact bounce.
Ambient temperature: $23^{\circ} \mathrm{C}$
*3. Measurement conditions: The insulation resistance was measured with a 500 VDC megohm meter at the same locations as the dielectric strength was measured.
*4. Contact your OMRON sales representative for Electrical Durability technical data.
*5. The characteristic meets IEC62055-31 test requirement.

G9TA-U1ATH

Terminal arrangement/Internal Connections
(TOP VIEW)

Check carefully the coil polarity of the Relay.

CAD Data

G9TA-U1ATW

Terminal arrangement/Internal Connections
(TOP VIEW)

Check carefully the coil polarity of the Relay.

CAD Data
G9TA-U1AP

Terminal arrangement/Internal Connection (BOTTOM VIEW)

Check carefully the coil polarity of the Relay.

G9TA-K1ATH

Terminal arrangement/Internal Connections
(TOP VIEW)

Check carefully the coil polarity of the Relay.

G9TA-K1ATW

Terminal arrangement/Internal Connections (TOP VIEW)

Check carefully the coil polarity of the Relay.

G9TA-K1AP

Terminal arrangement/Internal Connections
(BOTTOM VIEW)

Check carefully the coil polarity of the Relay.

[^0]
Engineering Data

- Maximum Switching Capacity

G9TA-U1A \square
G9TA-K1A \square

Approved Standards

The approval rating values for overseas standards are different from the performance values determined individually. Confirm the values before use.

- UL Recognized: YI (File No. E41515)

Model	Contact form	Coil ratings	Contact ratings	Number of test operations
G9TA-U1ATH			$60 \mathrm{~A}, 277 \mathrm{~V} \mathrm{AC}$ (Resistive) $70^{\circ} \mathrm{C}$	6,000
G9TA-U1ATW G9TA-K1ATW G9TA-K1ATH	SPST-NO (1a)	12V DC	$60 \mathrm{~A}, 250 \mathrm{~V} \mathrm{AC}$ (Resistive) and then 60 A , $250 \mathrm{~V}(\mathrm{PF}=0.5), 10 \mathrm{sec} . \mathrm{ON} / 20 \mathrm{sec}$. OFF, $40^{\circ} \mathrm{C}$	5,000 for resistive and then 5,000 for $\mathrm{PF}=0.5$

Safety Precautions

- Please refer to "РСВ Relays Common Precautions" for correct use.

Correct Use

- Installation

- The relay contacts are polarized. Incorrect wiring may cause a failure to break the circuit. Wire the Relay with care.
- Install the Relays in locations that are as dry as possible and have as little dust, dirt, and harmful gas.
- Using the Relay under high temperature, high humidity, or harmful gas may deteriorate its performance characteristics due to condensation or corrosive materials, resulting in failure or burn damage to the Relay.

- Relay Service Life

- The electrical durability of these Relays is specified as the number of load switching operations under a resistive load and OMRON-specified standard testing conditions.
The coil drive circuit, ambient environment, switching frequency, or load conditions (e.g., inductive load or capacitor load) may reduce the service life and possibly lead to failure to break. Always confirm the service life in the actual equipment.

\bullet Wiring

- Be sure to tighten all screws to the appropriate torque given below.
- Loose screws may result in burning due to abnormal heat generation during energization.
- M5 screws: 1.57 to $2.35 \mathrm{~N} \cdot \mathrm{~m}$
- Use a spring washer in order to prevent deformation and looseness.
- Allow suitable slack on leads when wiring, and do not apply excessive force to the terminals.

```
Please check each region's Terms & Conditions by region website.
```


OMRON Corporation

Electronic and Mechanical Components Company

Regional Contact

Americas
https://www.components.omron.com/
Asia-Pacific
https://ecb.omron.com.sg/
Korea
https://www.omron-ecb.co.kr/

Europe

http://components.omron.eu/
China
https://www.ecb.omron.com.cn/
Japan
https://www.omron.co.jp/ecb/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Industrial Relays category:
Click to view products by Omron manufacturer:

Other Similar products are found below :
6-1617801-8 6-1618107-9 7-1618273-3 EV250-4A-02 EV250-6A-01 FCA-125-CX8 FCA-325-159 FCA-410-138 8000-S3121 8-1618273-6 8-1618393-1 GCA63A220VAC60HZ GCA63A277VAC60HZ GCA63A600VAC60HZ 1-1672275-3 1-1833005-4 H-16/S1 A711Z H-8C H-8/S11 H-8/S68 ACC530U20 ACC730U30 RF303ZM4-12 DH18DA 1423675-8 AR4-15F13-C01 AR7-41F11 AVR907 15732A200 B07B032AC1-0329 B329 B490A 1618279-1 BHR124Y 1810DDB-SX N417 P30C42A12D1-120 2-1617748-6 2-1618375-1 2-1618396-6 2-1618398-1 JMAPD-5XL JMGACD-5M JMGSC-5LW JMGSCD-5L PBO-18A1218 PBO-40A3040 K8DSPH1200480VAC KA-3C-12A

[^0]: Note 1. Relay is delivered as "reset" status unless specified otherwise. However, the status may change due to the shock from transportation or mounting operations. Therefore, it is recommended the relay should be set to the expected status via a power supply before being used.
 Note 2. In order to maintain "set" or "reset" status, the energizing voltage to coil \& the pulse width shouldn't lower then the rated value.
 Note 3. Do not energize both of set and reset coil simultaneously.
 Note 4. Energizing time longer than $1,000 \mathrm{~ms}$ should be avoided.

