Miniature Power Relays MY

New Latching Levers for Circuit Checking
 Added to Our Best-selling MY General-purpose Relays

- Now lead-free to protect the environment.
- VDE certification (Germany).
- Different colors of coil tape for AC and DC models to more easily distinguish them.
- MY(S) models with latching levers added for easier circuit checking.

Refer to the Common Relay Precautions.

Model Number Structure

Classification	Structure Number of poles	Relays with Plug-in Terminals		$\boxed{\square}$	PCB terminals	Case-surface mounting\square
		With operation indicator	Without operation indicator	With latching lever		
Standard models (compliant with Electrical Appliances and Material Safety Act)	2	MY2N*	MY2*	MY2IN(S)*	MY2-02	MY2F
	Bifurcated	MY2ZN	MY2Z			
	3	MY3N	MY3		MY3-02	MY3F
	4	MY4N*	MY4*	MY4IN(S)*	MY4-02	MY4F
	Bifurcated	MY4ZN*	MY4Z*	MY4ZIN(S)*	MY4Z-02	MY4ZF
Models with diode for coil surge absorption (DC coil specification only)	2	MY2N-D2*	MY2-D*	MY2IN-D2(S)*	---	---
	Bifurcated	MY2ZN-D2	MY2Z-D			
	3	MY3N-D2	MY3-D			
	4	MY4N-D2*	MY4-D*	MY4IN-D2(S)*		
	Bifurcated	MY4ZN-D2*	MY4Z-D*	MY4ZIN-D2(S)*		
Models with CR circuit for coil surge absorption (AC coil specification only) - $\mathrm{H}-$	2	MY2N-CR*	MY2-CR*		---	
	$4 \begin{array}{ll} \\ & \\ & \text { Bifurcated }\end{array}$	MY4N-CR* MY4ZN-CR*	MY4-CR* MY4Z-CR*	MY4IN-CR(S)* MY4ZIN-CR(S)*		
Models with high contact reliability	4 Bifurcated	---	MY4Z-CBG	+		
Plastic sealed models	$4 \begin{array}{ll}4 & \\ & \text { Bifurcated }\end{array}$	MYQ4N	MYQ4 MYQ4Z		MYQ4-02 MYQ4Z-02	
Latching models (coil latching)	2		MY2K		MY2K-02	
Hermetic models	4 Bifurcated				MY4H-0 MY4ZH-0	

Note: 1. The models in this table are UL/CSA certified. This is indicated with a certification mark on the products.
(This does not include models with high contact reliability or plastic sealed, latching, or hermetically sealed models.)
2. Models with an asterisk (*) next to them are new versions.
3. The standard models with plug-in terminals, models with coil surge absorption diodes, and models with coil surge absorption CR circuits were used in combination with the PYF-E and PYFS (2-pole and 4-pole) for the EC Declaration of Conformity. These products display the CE Marking.
4. Products cannot be manufactured for the cells with a diagonal line. Ask your OMRON representative for details on manufacturing products for cells containing "---" in the above table.

[^0]
Ordering Information

When your order, specify the rated voltage.

Classification	Model	Rated voltage (V)	
		Standard products	Made-to-order items
Standard models	MY2	12, 24, 100/110, or 200/220 VAC	110/120 or 220/240 VAC
		12, 24, 48, or 100/110 VDC	
Models with built-in operation indicators	MY2N	12, 24, 100/110, 110/120, 200/220, or 220/240 VAC	
		12, 24, 48, or 100/110 VDC	
Models with built-in diodes	MY2-D	12, 24, or 100/110 VDC	48 VDC
Models with built-in diodes and operation indicators	MY2N-D2	12, 24, 48, or 100/110 VDC	
Models with built-in CR circuits	MY2-CR	100/110 or 200/220 VAC	110/120 or 220/240 VAC
Models with built-in CR circuits and operation indicators	MY2N-CR	100/110 or 200/220 VAC	110/120 or 220/240 VAC

Note: 1. Ask your OMRON representative for details on the time required to deliver made-to-order products.
2. Ask your OMRON representative for details on product specifications and the ability to manufacture products with voltages other than the above coil specifications.
3. The above models and specifications are new versions in the MY Series.
4. Except for MY2(N)-CR Relays with the above voltage specifications, all Relays have a height of 53 mm or less. If Mounting Brackets are required, refer to page 33 for selection information.

Ratings and Specifications

Ratings

Operating Coils (Standard Models)

Item Rated voltage (V)		Rated current (mA)		Coil resistance (Ω)	Coil inductance (H)		Mustoperate voltage (V)	Mustrelease voltage (V)	Maximum voltage (V)	Power consumption (VA, W)
		50 Hz	60 Hz		Armature OFF	Armature ON				
AC	12	106.5	91	46	0.17	0.33	80\% max. *1	30\% min. *2	110% of rated voltage	$\begin{aligned} & \text { Approx. } 1.0 \text { to } 1.2 \\ & \text { (at } 60 \mathrm{~Hz} \text {) } \end{aligned}$
	24	53.8	46	180	0.69	1.3				
	100/110	11.7/12.9	10/11	3,750	14.54	24.6				
	110/120	9.9/10.8	8.4/9.2	4,430	19.2	32.1				Approx. 0.9 to 1.1
	200/220	6.2/6.8	5.3/5.8	12,950	54.75	94.07				(at 60 Hz)
	220/240	4.8/5.3	4.2/4.6	18,790	83.5	136.4				
DC	12	72.7		165	0.73	1.37		10\% min. *2		Approx. 0.9
	24	36.3		662	3.2	5.72				
	48	17.6		2,725	10.6	21.0				
	100/110	8.7/9.6		11,440	45.6	86.2				

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with tolerances of $+15 \% /-20 \%$ for the AC rated current and $\pm 15 \%$ for the DC coil resistance.
2. The AC coil resistance and inductance values are reference values only (at 60 Hz).
3. Operating characteristics were measured at a coil temperature of $23^{\circ} \mathrm{C}$.
4. The maximum voltage capacity was measured at an ambient temperature of $23^{\circ} \mathrm{C}$.
*1. There is variation between products, but actual values are 80% max.
To ensure operation, apply at least 80% of the rated value (at a coil temperature of $+23^{\circ} \mathrm{C}$).
*2. There is variation between products, but actual values are 30% minimum for AC and 10% minimum for DC. To ensure release, use a value that is lower than the specified value.

Contact Ratings

Load	Resistive load	Inductive load (cos $\varphi=\mathbf{0 . 4 , ~ L / R = 7 ~ m s) ~}$
Rated load	5 A at 220 VAC 5 A at 24 VDC	2 A at 220 VAC 2 A at 24 VDC
Rated carry current	5 A	
Maximum contact voltage	$250 \mathrm{VAC}, 125 \mathrm{VDC}$	
Maximum contact current	5 A	
Contact configuration	DPDT	
Contact structure	Single	
Contact materials	Ag	

Item Type	Standard models	Model with built-in operation indicator, diode, or CR circuit
Ambient operating temperature*1	-55 to $70^{\circ} \mathrm{C}$	-55 to $60^{\circ} \mathrm{C}^{* 2}$
Ambient operating humidity	5% to 85%	

*1. With no icing or condensation.
*2. This limitation is due to the diode junction temperature and elements used.

Characteristics

Item	Type	Standard models	Models with builtin operation indicators	Models with built-in CR circuits	Models with built-in diodes	Model with built-in operation indicator and diode	Model with built-in operation indicator and CR circuit
Contact resistance*1		$50 \mathrm{~m} \Omega$ max.					
Operation time*2		20 ms max .					
Release time*2		20 ms max.					
Maximum operating frequency	Mechanical	18,000 operations/h					
	Rated load	1,800 operations/h					
Insulation resistance*3		$100 \mathrm{M} \Omega \mathrm{min}$.					
Dielectric strength	Between coil and contacts	$2,000 \mathrm{VAC}$ at $50 / 60 \mathrm{~Hz}$ for 1 min .					
	Between contacts of different polarity						
	Between contacts of the same polarity	1,000 VAC at $50 / 60 \mathrm{~Hz}$ for 1 min .					
Vibration resistance	Destruction	10 to 55 to $10 \mathrm{~Hz}, 0.5-\mathrm{mm}$ single amplitude ($1.0-\mathrm{mm}$ double amplitude)					
	Malfunction	10 to 55 to $10 \mathrm{~Hz}, 0.5-\mathrm{mm}$ single amplitude (1.0-mm double amplitude)					
Shock resistance	Destruction	1,000 m/s ${ }^{2}$					
	Malfunction	$200 \mathrm{~m} / \mathrm{s}^{2}$					
Endurance	Mechanical	AC: 50,000,000 operations min. DC: 100,000,000 operations min. (switching frequency: 18,000 operations/h)					
	Electrical*4	500,000 operations min. (rated load, switching frequency: 1,800 operations/h)					

Item \quad Number of poles	2 poles
Failure rate \mathbf{P} value (reference value)*5	1 mA at 5 VDC
Weight	Approx. 35 g

Note: These are initial values.
*1. Measurement conditions: 1 A at 5 VDC using the voltage drop method.
*2. Measurement conditions. With rated operating power applied
*3. Measurement conditions: For 500 VDC applied to the same location as for dielectric strength measurement
*4. Ambient temperature condition: $23^{\circ} \mathrm{C}$
*5. This value was measured at a switching frequency of 120 operations per minute.

MY2, MY2N, MY2-D, MY2N-D2, MY2-CR,

 and MY2N-CR

Eight, 1.2-dia. $\times 2.2$ oval holes

MY2-D
MY2N-D2

(The coil has no polarity.)

Terminal Arrangement/In ternal Connections (Bottom View) Standard Models

Note: 1. An AC model has coil disconnection selfdiagnosis.
2. For the DC models, check the coil polarity when wiring and wire all connections correctly
3. The indicator is red for AC and green for DC.
4. The operation indicator indicates the
energization of the coil and does not represent contact operation.
MY2-CR

MY2N-CR

(The coil has no polarity.)

(The coil has no polarity.)

Refer to the standards certifications and compliance section of your OMRON website for the latest information on certified models.

Ordering Information
When your order, specify the rated voltage.

Classification	Model	Rated voltage (V)	
		Standard products	Made-to-order items
Standard models	MY2Z	100/110 or 200/220 VAC	12, 24, 100/120, or 200/240 VAC
		12 or 24 VDC	48 or 100/110 VDC
Models with built-in operation indicators	MY2ZN	100/110 or 200/220 VAC	12, 24, 100/120, or 200/240 VAC
		24 VDC	12, 48, or 100/110 VDC
Models with built-in diodes	MY2Z-D	24 VDC	12 or 100/110 VDC
Models with built-in diodes and operation indicators	MY2ZN-D2	24 or 100/110 VDC	12 VDC
Models with built-in CR circuits	MY2Z-CR		100/110 or 200/220 VAC
Models with built-in CR circuits and operation indicators	MY2ZN-CR	100/110 VAC	200/220 VAC

Note: 1. Ask your OMRON representative for details on the time required to deliver made-to-order products.
2. Ask your OMRON representative for details on product specifications and the ability to manufacture products with voltages other than the above coil specifications.

Ratings and Specifications

Ratings

Operating Coil (Standard Models)

Item Rated voltage (V)		Rated current (mA)		Coil resistance (Ω)	Coil inductance (H)		Mustoperate voltage (V)	Mustrelease voltage (V)	Maximum voltage (V)	Power consumption (VA, W)
		50 Hz	60 Hz		Armature OFF	Armature ON				
AC	12	106.5	91	46	0.17	0.33	80\% max.*1	30\% min.*2	110% of rated voltage	Approx. 1.0 to 1.2 (at 60 Hz)
	24	53.8	46	180	0.69	1.3				
	100/110	11.7/12.9	10/11	3,750	14.54	24.6				
	110/120	9.9/10.8	8.4/9.2	4,430	19.2	32.1				Approx. 0.9 to 1.1
	200/220	6.2/6.8	5.3/5.8	12,950	54.75	94.07				(at 60 Hz)
	220/240	4.8/5.3	4.2/4.6	18,790	83.5	136.4				
DC	12	75		160	0.73	1.37		10\% min.*2		Approx. 0.9
	24	36.9		650	3.2	5.72				
	48	18.5		2,600	10.6	21.0				
	100/110	9.1/10		11,000	45.6	86.2				

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with tolerances of $+15 \% /-20 \%$ for the AC rated current and $\pm 15 \%$ for the DC coil resistance.
2. The AC coil resistance and inductance values are reference values only (at 60 Hz).
3. Operating characteristics were measured at a coil temperature of $23^{\circ} \mathrm{C}$.
4. The maximum voltage capacity was measured at an ambient temperature of $23^{\circ} \mathrm{C}$.
*1. There is variation between products, but actual values are 80% max.
To ensure operation, apply at least 80% of the rated value
*2. There is variation between products, but actual values are 30% minimum for $A C$ and 10% minimum for DC. To ensure release, use a value that is lower than the specified value

Contact Ratings

Load Item	Resistive load	Inductive load $(\cos \varphi=0.4, \mathrm{~L} / \mathrm{R}=7 \mathrm{~ms})$
Rated load	5 A at 220 VAC 5 A at 24 VDC	2 A at 220 VAC 2 A at 24 VDC
Rated carry current	5 A	
Maximum contact voltage	250 VAC, 125 VDC	
Maximum contact current	5 A	
Contact configuration	DPDT	
Contact structure	Bifurcated	
Contact materials	Au plating + Ag	

Item \quad Type	Standard models	Model with built-in operation indicator, diode, or CR circuit
Ambient operating temperature*1	-55 to $70^{\circ} \mathrm{C}$	-55 to $60^{\circ} \mathrm{C} * 2$
Ambient operating humidity	5% to 85%	

*2. This limitation is due to the diode junction temperature and elements used.

Characteristics

Item Type		Standard models	Models with builtin operation indicators	Models with built-in diodes	Model with built-in operation indicator and diode	Models with built-in CR circuits	Models with built-in CR circuits and operation indicators
Contact resistance*1		$50 \mathrm{~m} \Omega$ max.					
Operation time*2		20 ms max.					
Release time*2		20 ms max .					
Maximum operating frequency	Mechanical	18,000 operations/h					
	Rated load	1,800 operations/h					
Insulation resistance*3		$100 \mathrm{M} \Omega \mathrm{min}$.					
Dielectric strength	Between coil and contacts	2,000 VAC at $50 / 60 \mathrm{~Hz}$ for 1 min .					
	Between contacts of different polarity						
	Between contacts of the same polarity	$1,000 \mathrm{VAC}$ at $50 / 60 \mathrm{~Hz}$ for 1 min .					
Vibration resistance	Destruction	10 to 55 to $10 \mathrm{~Hz}, 0.5-\mathrm{mm}$ single amplitude ($1.0-\mathrm{mm}$ double amplitude)					
	Malfunction	10 to 55 to $10 \mathrm{~Hz}, 0.5-\mathrm{mm}$ single amplitude (1.0-mm double amplitude)					
Shock resistance	Destruction	1,000 m/s ${ }^{2}$					
	Malfunction	$200 \mathrm{~m} / \mathrm{s}^{2}$					
Endurance	Mechanical	50,000,000 operations min. (operating frequency: 18,000 operations/h)					
	Electrical*4	200,000 operations min. (rated load, switching frequency: 1,800 operations/h)					

Item \quad Number of poles	2 poles
Failure rate \mathbf{P} value (reference value)*5	$100 \mu \mathrm{~A}$ at 1 VDC
Weight	Approx. 35 g

Note: These are initial values.
*1. Measurement conditions: 1 A at 5 VDC using the voltage drop method.
*2. Measurement conditions: With rated operating power applied.
Ambient temperature condition: $23^{\circ} \mathrm{C}$
3. Measurement conditions: For 500 VDC applied to the same location as for dielectric strength measurement. $ 4$. Ambient temperature condition: $23^{\circ} \mathrm{C}$
*5. This value was measured at a switching frequency of 120 operations per minute.
Dimensions
(Unit: mm)

MY2Z, MY2ZN, MY2Z-D, MY2ZN-D2, MY2Z-CR, and MY2ZN-CR

Eight, 1.2-dia. $\times 2.2$ oval holes

* For the MY2Z-CR and MY2ZN-CR this dimension is 53 mm max.

Terminal Arrangement/ Internal Connections (Bottom View) Standard Models

(The coil has no polarity.)

MY2ZN-D2

(Check the coil polarity when wining and wire all connections correctly.

$\binom{$ Check the coil polarity when wining }{ and wire all connections corectly. }

Note: 1. An AC model has coil disconnection selfdiagnosis.
2. For the DC models, check the coil polarity when wiring and wire all connections correctly.
3. The indicator is red for AC and green for DC.
4. The operation indicator indicates the energization of the coil and does not represent contact operation.

MY2Z-CR

(The coil has no polarity.)

Ordering Information
When your order, specify the rated voltage.

Classification	Model	Rated voltage (V)	
		Standard products	Made-to-order items
Standard models	MY3	24, 100/110, 200/220, or 220/240 VAC	12, or 110/120 VAC
		12, 24, or 100/110 VDC	48 VDC
Models with built-in operation indicators	MY3N	24, 100/110, 200/220, or 220/240 VAC	12, or 110/120 VAC
		24 VDC	12, 48, or 100/110 VDC
Models with built-in diodes	MY3-D	24 VDC	12 or 100/110 VDC
Models with built-in diodes and operation indicators	MY3N-D2	24 VDC	12 or 100/110 VDC

Note: 1. Ask your OMRON representative for details on the time required to deliver made-to-order products.
2. Ask your OMRON representative for details on product specifications and the ability to manufacture products with voltages other than the above coil specifications.

Ratings and Specifications

Ratings

Operating Coil (Standard Models)

Rated voltage ((V)		Rated current (mA)		Coil resistance (Ω)	Coil inductance (H)		Mustoperate voltage (V)	Mustrelease voltage (V)	Maximum voltage (V)	Power consumption(VA, W)
		50 Hz	60 Hz		Armature OFF	Armature ON				
AC	12	106.5	91	46	0.17	0.33	80\% max.*1	30\% min.*2	110% of rated voltage	Approx. 1.0 to 1.2
	24	53.8	46	180	0.69	1.3				(at 60 Hz)
	100/110	11.7/12.9	10/11	3,750	14.54	24.6				
	110/120	9.9/10.8	8.4/9.2	4,430	19.2	32.1				Approx. 0.9 to 1.1
	200/220	6.2/6.8	5.3/5.8	12,950	54.75	94.07				(at 60 Hz)
	220/240	4.8/5.3	4.2/4.6	18,790	83.5	136.4				
DC	12	75		160	0.73	1.37		10\% min.*2		Approx. 0.9
	24	36.9		650	3.2	5.72				
	48	18.5		2,600	10.6	21.0				
	100/110	9.1/10		11,000	45.6	86.2				

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with tolerances of $+15 \% /-20 \%$ for the AC rated current and $\pm 15 \%$ for the DC coil resistance.
2. The AC coil resistance and inductance values are reference values only (at 60 Hz).
3. Operating characteristics were measured at a coil temperature of $23^{\circ} \mathrm{C}$.
4. The maximum voltage capacity was measured at an ambient temperature of $23^{\circ} \mathrm{C}$.
*1. There is variation between products, but actual values are 80% max.
To ensure operation, apply at least 80% of the rated value
*2. There is variation between products, but actual values are 30% minimum for AC and 10% minimum for DC. To ensure release, use a value that is lower than the specified value.

Contact Ratings

Item	Load	Resistive load
Rated load	Inductive load (cos $\varphi=\mathbf{0 . 4 , ~ L / R ~}=7 \mathrm{~ms})$	
Rated carry current	5 A at 220 VAC 5 A at 24 VDC	2 A at 220 VAC 2 A at 24 VDC
Maximum contact voltage	$250 \mathrm{VAC}, 125 \mathrm{VDC}$	
Maximum contact current	5 A	
Contact configuration	3 3PDT	
Contact structure	Single	
Contact materials	Ag	

Item Type	Standard models	Operation indicator and diode
Ambient operating temperature ${ }^{* 1}$	-55 to $70^{\circ} \mathrm{C}$	-55 to $60^{\circ} \mathrm{C}^{* 2}$
Ambient operating humidity	5% to 85%	

*2. This limitation is due to the diode junction temperature and elements used.

Characteristics

Item Type		Standard models	Models with built-in operation indicators	Models with built-in diodes	Model with built-in operation indicator and diode
Contact resistance*1		$50 \mathrm{~m} \Omega$ max.			
Operation time*2		20 ms max.			
Release time*2		20 ms max .			
Maximum operating frequency	Mechanical	18,000 operations/h			
	Rated load	1,800 operations/h			
Insulation resistance*3		$100 \mathrm{M} \Omega \mathrm{min}$.			
Dielectric strength	Between coil and contacts	2,000 VAC at 50/60 Hz for 1 min .			
	Between contacts of different polarity				
	Between contacts of the same polarity	1,000 VAC at 50/60 Hz for 1 min .			
Vibration resistance	Destruction	10 to 55 to $10 \mathrm{~Hz}, 0.5-\mathrm{mm}$ single amplitude (1.0-mm double amplitude)			
	Malfunction	10 to 55 to $10 \mathrm{~Hz}, 0.5-\mathrm{mm}$ single amplitude (1.0-mm double amplitude)			
Shock resistance	Destruction	$1,000 \mathrm{~m} / \mathrm{s}^{2}$			
	Malfunction	$200 \mathrm{~m} / \mathrm{s}^{2}$			
Endurance	Mechanical	AC: 50,000,000 operations min. DC: 100,000,000 operations min. (switching frequency: 18,000 operations/h)			
	Electrical*4	500,000 operations min. (rated load, switching frequency: 1,800 operations/h)			

Item \quad Number of poles	3 poles
Failure rate P value (reference value)*5	1 mA at 5 VDC
Weight	Approx. 35 g

Note: These are initial values.
*1. Measurement conditions: 1 A at 5 VDC using the voltage drop method
*2. Measurement conditions: With rated operating power applied.
Ambient temperature condition: $23^{\circ} \mathrm{C}$
*3. Measurement conditions: For 500 VDC applied to the same location as for dielectric strength measurement. *4. Ambient temperature condition: $23^{\circ} \mathrm{C}$
*5. This value was measured at a switching frequency of 120 operations per minute.

Dimensions

(Unit: mm)

MY3, MY3N, MY3-D, and MY3N-D2

Eleven, 1.2-dia. $\times 2.2$ oval holes

MY3-D
$\binom{$ Check the coil polarity when wining }{ and wire all connections correctly. }

MY3N-D2
(Check the coil polarity when wiring $\left.\begin{array}{l}\text { and wire all connections correctly. }\end{array}\right)$

Note: 1. An AC model has coil disconnection selfdiagnosis.
2. For the DC models, check the coil polarity when wiring and wire all connections correctly
3. The indicator is red for AC and green for DC.
4. The operation indicator indicates the energization of the coil and does not represent contact operation.

Ordering Information
When your order, specify the rated voltage.

Classification	Model	Rated voltage (V)	
		Standard products	Made-to-order items
Standard models	MY4	24, 100/110, or 200/220 VAC	12, 110/120, or 220/240 VAC
		12, 24, 48, or 100/110 VDC	
Models with built-in operation indicators	MY4N	12, 24, 100/110, 110/120, 200/220, or 220/240 VAC	
		12, 24, 48, or 100/110 VDC	
Models with built-in diodes	MY4-D	12, 24, 48, or 100/110 VDC	
Models with built-in diodes and operation indicators	MY4N-D2	12, 24, or 100/110 VDC	48 VDC
Models with built-in CR circuits	MY4-CR	100/110 or 200/220 VAC	110/120 or 220/240 VAC
Models with built-in CR circuits and operation indicators	MY4N-CR	100/110, 110/120, or 200/220 VAC	220/240 VAC

Note: 1. Ask your OMRON representative for details on the time required to deliver made-to-order products.
2. Ask your OMRON representative for details on product specifications and the ability to manufacture products with voltages other than the above coil specifications.
3. The above models and specifications are new versions in the MY Series.
4. Except for MY4(N)-CR Relays with the above voltage specifications, all Relays have a height of 53 mm or less. If Mounting Brackets are required, refer to page 33 for selection information.

Ratings and Specifications

Ratings

Operating Coil (Standard Models)

Rated voltage (V)		Rated current (mA)		Coil resistance (Ω)	Coil inductance (H)		Mustoperate voltage (V)	Mustrelease voltage (V)	Maximum voltage (V)	Power consumption (VA, W)
		50 Hz	60 Hz		Armature OFF	Armature ON				
AC	12	106.5	91	46	0.17	0.33	80\% max.*1	30\% min.*2	110% of rated voltage	Approx. 1.0 to 1.2$($ at 60 Hz$)$ (at 60 Hz)
	24	53.8	46	180	0.69	1.3				
	100/110	11.7/12.9	10/11	3,750	14.54	24.6				
	110/120	9.9/10.8	8.4/9.2	4,430	19.2	32.1				Approx. 0.9 to 1.1
	200/220	6.2/6.8	5.3/5.8	12,950	54.75	94.07				(at 60 Hz)
	220/240	4.8/5.3	4.2/4.6	18,790	83.5	136.4				
DC	12	72.7		165	0.73	1.37		10\% min.*2		Approx. 0.9
	24	36.3		662	3.2	5.72				
	48	17.6		2,725	10.6	21.0				
	100/110	8.7/9.6		11,440	45.6	86.2				

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with tolerances of $+15 \% /-20 \%$ for the AC rated current and $\pm 15 \%$ for the DC coil resistance.
2. The AC coil resistance and inductance values are reference values only (at 60 Hz).
3. Operating characteristics were measured at a coil temperature of $23^{\circ} \mathrm{C}$.
4. The maximum voltage capacity was measured at an ambient temperature of $23^{\circ} \mathrm{C}$.
*1. There is variation between products, but actual values are 80% max.
To ensure operation, apply at least 80% of the rated value
*2. There is variation between products, but actual values are 30% minimum for AC and 10% minimum for DC. To ensure release, use a value that is lower than the specified value.

Contact Ratings

Load	Resistive load	Inductive load (cos $\varphi=\mathbf{0 . 4 , ~ L / R ~}=\mathbf{7} \mathbf{~ m s})$
Rated load	3 A at 220 VAC 3 A at 24 VDC	0.8 A at 220 VAC 1.5 A at 24 VDC
Rated carry current	3 A	
Maximum contact voltage	$250 \mathrm{VAC}, 125 \mathrm{VDC}$	
Maximum contact current	3 A	
Contact configuration	4PDT	
Contact structure	Single	
Contact materials	Au cladding + Ag alloy	

Item Type	Standard models	Model with built-in operation indicator, diode, or CR circuit
Ambient operating temperature*1	-55 to $70^{\circ} \mathrm{C}$	-55 to $60^{\circ} \mathrm{C}^{* 2}$
Ambient operating humidity	5% to 85%	

*1. With no icing or condensation.
*2. This limitation is due to the diode junction temperature and elements used.

Characteristics

Item Type		Standard models	Models with builtin operation indicators	Models with built-in CR circuits	Models with built-in diodes	Model with built-in operation indicator and diode	Model with built-in operation indicator and CR circuit
Contact resistance*1		$50 \mathrm{~m} \Omega$ max.					
Operation time*2		20 ms max .					
Release time*2		20 ms max .					
Maximum operating frequency	Mechanical	18,000 operations/h					
	Rated load	1,800 operations/h					
Insulation resistance*3		$100 \mathrm{M} \Omega \mathrm{min}$.					
Dielectric strength	Between coil and contacts	2,000 VAC at 50/60 Hz for 1 min .					
	Between contacts of different polarity						
	Between contacts of the same polarity	1,000 VAC at 50/60 Hz for 1 min .					
Vibration resistance	Destruction	10 to 55 to $10 \mathrm{~Hz}, 0.5-\mathrm{mm}$ single amplitude (1.0-mm double amplitude)					
	Malfunction	10 to 55 to $10 \mathrm{~Hz}, 0.5-\mathrm{mm}$ single amplitude (1.0-mm double amplitude)					
Shock resistance	Destruction	$1,000 \mathrm{~m} / \mathrm{s}^{2}$					
	Malfunction	$200 \mathrm{~m} / \mathrm{s}^{2}$					
Endurance	Mechanical	AC: 50,000,000 operations min. DC: 100,000,000 operations min. (switching frequency:: 18,000 operations/h)					
	Electrical*4	200,000 operations min. (rated load, switching frequency: 1,800 operations/h)					

ItemNumber of poles	4 poles
Failure rate P value (reference value)*5	1 mA at 1 VDC
Weight	Approx. 35 g

Note: These are initial values.
*1. Measurement conditions: 1 A at 5 VDC using the voltage drop method
*2. Measurement conditions: With rated operating power applied
Ambient temperature condition: $23^{\circ} \mathrm{C}$
3. Measurement conditions: For 500 VDC applied to the same location as for dielectric strength measurement. $ 4$. Ambient temperature condition: $23^{\circ} \mathrm{C}$
$* 5$. This value was measured at a switching frequency of 120 operations per minute.

Engineering Data

List of Actual Load Endurance (Refer to Engineering Data on page 20.)

Model	Load type	Conditions	Switching frequency	Electrical durability (operations min.)
MY4 DC24V	AC magnetic switch	35 VA at 100 VAC Making current: 4 A , Steady-state current: 0.35 A	ON: 1 s OFF: 3s	500,000
	DC solenoid	40 W at 24 VDC Steady-state current: $1.6 \mathrm{~A}, \mathrm{~L} / \mathrm{R}=10 \mathrm{~ms}$ Surge-absorbing diode connected	$\begin{aligned} & \text { ON: } 0.5 \mathrm{~s} \\ & \text { OFF: } 1.5 \mathrm{~s} \end{aligned}$	500,000
		20 W at 24 VDC Steady-state current: $0.8 \mathrm{~A}, \mathrm{~L} / \mathrm{R}=10 \mathrm{~ms}$ Surge-absorbing diode connected	ON: 0.5 s OFF: 1.5 s	1,000,000

MY4, MY4N, MY4-D, MY4N-D2, MY4-CR, and MY4N-CR

2. For the DC models, check the coil polarity when
wiring and wire all connections correctly.
3. The indicator is red for AC and green for DC.
4. The operation indicator indicates the energization of the coil and does not represent contact operation.

(The coil has no polarity.)
(The coil has no polarity.)

Ordering Information
When your order, specify the rated voltage.

Classification	Model	Rated voltage (V)	
		Standard products	Made-to-order items
Standard models	MY4Z	100/110 or 200/220 VAC	110/120 or 220/240 VAC
		12, 24, 48, or 100/110 VDC	
Models with built-in operation indicators	MY4ZN	100/110 or 200/220 VAC	24, 110/120, or 220/240 VAC
		24 or 100/110 VDC	12 or 48 VDC
Models with built-in diodes	MY4Z-D	24 or 100/110 VDC	12 or 48 VDC
Models with built-in diodes and operation indicators	MY4ZN-D2	12, 24,48 , or 100/110 VDC	
Models with built-in CR circuits	MY4Z-CR	100/110 or 200/220 VAC	110/120 or 220/240 VAC
Models with built-in CR circuits and operation indicators	MY4ZN-CR	100/110 or 200/220 VAC	110/120 or 220/240 VAC

Note: 1. Ask your OMRON representative for details on the time required to deliver made-to-order products.
2. Ask your OMRON representative for details on product specifications and the ability to manufacture products with voltages other than the above coil specifications.
3. The above models and specifications are new versions in the MY Series.

Ratings and Specifications

Ratings

Operating Coil (Standard Models)

RatedRaltage ((V)vom		Rated current (mA)		Coil resistance (Ω)	Coil inductance (H)		Mustoperate voltage (V)	Release voltage (V)	Maximum voltage (V)	Power consumption (VA, W)
		50 Hz	60 Hz		Armature OFF	Armature ON				
AC	12	106.5	91	46	0.17	0.33	80\% max.*1	30\% min.*2	110% of rated voltage	$\begin{aligned} & \text { Approx. } 1.0 \text { to } 1.2 \\ & \text { (at } 60 \mathrm{~Hz} \text {) } \end{aligned}$
	24	53.8	46	180	0.69	1.3				
	100/110	11.7/12.9	10/11	3,750	14.54	24.6				
	110/120	9.9/10.8	8.4/9.2	4,430	19.2	32.1				Approx. 0.9 to 1.1
	200/220	6.2/6.8	5.3/5.8	12,950	54.75	94.07				(at 60 Hz)
	220/240	4.8/5.3	4.2/4.6	18,790	83.5	136.4				
DC	12	72.7		165	0.73	1.37		10\% min.*2		Approx. 0.9
	24	36.3		662	3.2	5.72				
	48	17.6		2,725	10.6	21.0				
	100/110	8.7/9.6		11,440	45.6	86.2				

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with tolerances of $+15 \% /-20 \%$ for the AC rated current and $\pm 15 \%$ for the DC coil resistance.
2. The $A C$ coil resistance and inductance values are reference values only (at 60 Hz).
3. Operating characteristics were measured at a coil temperature of $23^{\circ} \mathrm{C}$.
3. Operating characteristics were measured at a coil temperature of $23^{\circ} \mathrm{C}$.
4. The maximum voltage capacity was measured at an ambient temperature of $23^{\circ} \mathrm{C}$.
*1. There is variation between products, but actual values are 80% max.
To ensure operation, apply at least 80% of the rated value
*2. There is variation between products, but actual values are 30% minimum for $A C$ and 10% minimum for DC. To ensure release, use a value that is lower than the specified value.

Contact Ratings

Item	Load	Resistive load
Rated load	Inductive load (cos $\varphi=\mathbf{0 . 4 , ~ L / R ~ = ~} \mathbf{7 m s})$	
Rated carry current	3 A at 220 VAC	0.8 A at 220 VAC
3 A at 24 VDC		
1.5 A at 24 VDC		

Item Type	Standard models	Model with built-in operation indicator, diode, or CR circuit
Ambient operating temperature*1	-55 to $70^{\circ} \mathrm{C}$	-55 to $60^{\circ} \mathrm{C}$
Ambient operating humidity	5% to 85%	

*1. With no icing or condensation.
*2. This limitation is due to the diode junction temperature and elements used.

Characteristics

Item Type		Standard models	Models with builtin operation indicators	Models with built-in CR circuits	Models with built-in diodes	Model with built-in operation indicator and diode	Model with built-in operation indicator and CR circuit
Contact resistance*1		$50 \mathrm{~m} \Omega$ max.					
Operation time*2		20 ms max.					
Release time*2		20 ms max .					
Maximum operating frequency	Mechanical	18,000 operations/h					
	Rated load	1,800 operations/h					
Insulation resistance*3		$100 \mathrm{M} \Omega \mathrm{min}$.					
Dielectric strength	Between coil and contacts	2,000 VAC at $50 / 60 \mathrm{~Hz}$ for 1 min .					
	Between contacts of different polarity						
	Between contacts of the same polarity	1,000 VAC at $50 / 60 \mathrm{~Hz}$ for 1 min .					
Vibration resistance	Destruction	10 to 55 to $10 \mathrm{~Hz}, 0.5-\mathrm{mm}$ single amplitude (1.0-mm double amplitude)					
	Malfunction	10 to 55 to $10 \mathrm{~Hz}, 0.5-\mathrm{mm}$ single amplitude (1.0-mm double amplitude)					
Shock resistance	Destruction	1,000 m/s ${ }^{2}$					
	Malfunction	$200 \mathrm{~m} / \mathrm{s}^{2}$					
Endurance	Mechanical	20,000,000 operations min. (switching frequency: 18,000 operations/h)					
	Electrical*4	100,000 operations min. (rated load, switching frequency: 1,800 operations/h)					

Item \quad Number of poles	4 poles
Failure rate P value (reference value) $)^{* 5}$	$100 \mu \mathrm{~A}$ at 1 VDC
Weight	Approx. 35 g

Note: These are initial values.
*1. Measurement conditions: 1 A at 5 VDC using the voltage drop method
*2. Measurement conditions: With rated operating power applied.
Ambient temperature condition: $23^{\circ} \mathrm{C}$
*3. Measurement conditions: For 500 VDC applied to the same location as for dielectric strength measurement
*4. Ambient temperature condition: $23^{\circ} \mathrm{C}$
*5. This value was measured at a switching frequency of 120 operations per minute.
Dimensions
MY4Z, MY4ZN, MY4Z-D, MY4ZN-D2, MY4Z-CR, and MY4ZN-CR

Note: 1. An AC model has coil disconnection selfdiagnosis.
2. For the DC models, check the coil polarity when wiring and wire all connections correctly
3. The indicator is red for AC and green for DC.
4. The operation indicator indicates the energization of the coil and does not represent contact operation.

MY4Z-CR

(The coil has no polarity.)

MY4ZN-CR

(The coil has no polarity.)

Miniature Power Relays with Latching Levers: MY(S)
Refer to the standards certifications and compliance section of your OMRON website for the latest information on certified models.

Ordering Information
Be sure to clearly indicate the rated voltage and add "(S)" when you place your order. Example: MY2IN 110/110 VAC (S)

Classification	Contact configuration	Model	Rated voltage (V)	
			Standard products	Made-to-order items
Models with built-in operation indicators	2	MY2IN (S)	-	100/110 or 200/220 VAC
			12, 24, or 48 VDC	---
	4	MY4IN (S)	-	100/110 or 200/220 VAC
			12, 24, or 48 VDC	---
	4 bifurcated	MY4ZIN (S)	-	100/110 or 200/220 VAC
			-	12, 24, or 48 VDC
Models with built-in diode for coil surge absorption	2	MY2IN-D2 (S)	12 or 24 VDC	48 VDC
	4	MY4IN-D2 (S)	24 VDC	12 or 48 VDC
	4 bifurcated	MY4ZIN-D2 (S)	24 VDC	12 or 48 VDC
Models with built-in CR circuit for coil surge absorption	4	MY4IN-CR (S)	-	100/110 or 200/220 VAC
	4 bifurcated	MY4ZIN-CR (S)	-	100/110 or 200/220 VAC

Note: 1. Ask your OMRON representative for details on the time required to deliver made-to-order products.
2. Ask your OMRON representative for details on product specifications and the ability to manufacture products with voltages other than the above coil specifications.

Ratings and Specifications

Ratings

Operating Coil

Item Rated voltage (V)		Rated current (mA)		Coil resistance (Ω)	Coil inductance (H)		Must-operate voltage (V)	Must-release voltage (V)	Maximum voltage (V)	Power consumption (VA, W)
		50 Hz	60 Hz		Armature OFF	Armature ON				
AC	100/110	11.7/12.9	10/11	3,750	14.54	24.6	80\% max.* ${ }^{\text {1 }}$	30\% min.*2	110% of rated voltage	Approx. 0.9 to 1.1 (at 60 Hz)
	200/220	6.2/6.8	5.3/5.8	12,950	54.75	94.07				
DC	12	75		160	0.73	1.37		10\% min.*2		Approx. 0.9
	24	37.7		636	3.2	5.72				
	48	18.8		2,560	10.6	21				

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with tolerances of $+15 \% /-20 \%$ for the AC rated current and $\pm 15 \%$ for the DC coil resistance.
2. The AC coil resistance and inductance values are reference values only (at 60 Hz).
3. Operating characteristics were measured at a coil temperature of $23^{\circ} \mathrm{C}$.
4. The maximum voltage capacity was measured at an ambient temperature of $23^{\circ} \mathrm{C}$.
$* 1$. There is variation between products, but actual values are 80% max.
To ensure operation, apply at least 80% of the rated value.
*2. There is variation between products, but actual values are 30% minimum for AC and 10% minimum for DC. To ensure release, use a value that is lower than the specified value.

Contact Ratings

Number of poles Item Load	2 poles		4 poles		4 poles (bifurcated)	
	Resistive load $(\cos \varphi=1)$	Inductive load (cos $\varphi=0.4, \mathrm{~L} / \mathrm{R}=7 \mathrm{~ms}$)	Resistive load $(\cos \varphi=1)$	Inductive load (cos $\varphi=0.4, \mathrm{~L} / \mathrm{R}=7 \mathrm{~ms}$)	Resistive load $(\cos \varphi=1)$	Inductive load (cos $\varphi=0.4, \mathrm{~L} / \mathrm{R}=7 \mathrm{~ms}$)
Rated load	5 A at 250 VAC 5 A at 30 VDC	$\begin{aligned} & 2 \mathrm{~A} \text { at } 250 \mathrm{VAC} \\ & 2 \mathrm{~A} \text { at } 30 \mathrm{VDC} \end{aligned}$	3 A at 250 VAC $3 A$ at 30 VDC	0.8 A at 250 VAC 1.5 A at 30 VDC	3 A at 250 VAC 3 A at 30 VDC	0.8 A at 250 VAC 1.5 A at 30 VDC
Rated carry current	$10 \mathrm{~A}^{*}$		5 A* *			
Maximum contact voltage	250 VAC, 125 VDC					
Maximum contact current	10 A		5 A			
Contact configuration	Single		Single		Bifurcated	
Contact materials	Ag		Au cladding + Ag alloy		Au cladding + Ag alloy	

* If you use a Socket, do not exceed the rated carry current of the Socket.

Item	Type
Model with built-in operation indicator, diode, or CR circuit	
Ambient operating temperature*1	-55 to $60^{\circ} \mathrm{C}^{* 2}$
Ambient operating humidity	5% to 85%

*1. With no icing or condensation.
*2. This limitation is due to the diode junction temperature and elements used.

Characteristics

	Type	2 poles	4 poles	4 poles (bifurcated)
Contact resistance*1		$100 \mathrm{~m} \Omega$ max.		
Operation time*2		20 ms max .		
Release time*2		20 ms max.		
Maximum operating frequency	Mechanical	18,000 operations/h		
	Rated load	1,800 operations/h		
Insulation resistance*3		1,000 M 2 min .		
Dielectric strength	Between coil and contacts	2,000 VAC at $50 / 60 \mathrm{~Hz}$ for 1 min .		
	Between contacts of different polarity			
	Between contacts of the same polarity	$1,000 \mathrm{VAC}$ at $50 / 60 \mathrm{~Hz}$ for 1 min .		
Vibration resistance	Destruction	10 to 55 to $10 \mathrm{~Hz}, 0.5-\mathrm{mm}$ single amplitude (1.0-mm double amplitude)		
	Malfunction	10 to 55 to $10 \mathrm{~Hz}, 0.5-\mathrm{mm}$ single amplitude (1.0-mm double amplitude)		
Shock resistance	Destruction	1,000 m/s ${ }^{2}$		
	Malfunction	$200 \mathrm{~m} / \mathrm{s}^{2}$		
Endurance	Mechanical	AC: 50,000,000 operations min., DC: 100,000,000 operations min. (switching frequency: 18,000 operations/h)		20,000,000 operations min. (switching frequency: 18,000 operations/h)
	Electrical*4	500,000 operations min. (rated load, switching frequency: 1,800 operations/h)	200,000 operations min. (rated load, switching frequency: 1,800 operations/h)	100,000 operations min. (rated load, switching frequency: 1,800 operations/h)
Failure rate P value (reference value)*5		1 mA at 5 VDC	1 mA at 1 VDC	$100 \mu \mathrm{~A}$ at 1 VDC
Weight		Approx. 35 g		

Note: These are initial values.
*1. Measurement conditions: 1 A at 5 VDC using the voltage drop method
*2. Measurement conditions: When rated operating power is applied and ambient temperature is $23^{\circ} \mathrm{C}$
*3. Measurement conditions: For 500 VDC applied to the same location as for dielectric strength measurement
*4. Ambient temperature condition: $23^{\circ} \mathrm{C}$
$* 5$. This value was measured at a switching frequency of 120 operations per minute.

List of Models

MY2IN (S)
MY2IN-D2 (S)

Terminal Arrangement/Internal Connections (Bottom View)

Note: For the DC models, check the coil polarity when wiring and wire all connections correctly.

MY4 (Z) IN (S)
MY4 (Z) IN-D2 (S)
MY4 (Z) IN-CR (S)

Terminal Arrangement/Internal Connections (Bottom View)

MY4(Z)IN(S)
(DC Models)

MY4(Z)IN-D2(S) (DC Models Only)

MY4(Z)IN-CR(S) (AC Models Only)

Note: For the DC models, check the coil polarity when wiring and wire all connections correctly.

Refer to the standards certifications and compliance section of your OMRON website for the latest information on certified models.

Ordering Information
When your order, specify the rated voltage.

Number of poles	Classification	Model	Rated voltage (V)	
			Standard products	Made-to-order items
2 poles	Models with single contacts	MY2-02	100/110, 200/220, or 200/240 VAC	12, 24,100 , or 110/120 VAC
			12, 24 or 48 VDC	100/110 VDC
3 poles	Models with single contacts	MY3-02	100/110 or 200/220 VAC	12, 24, 110/120, or 220/240 VAC
			24 VDC	12, 48, or 100/110 VDC
4 poles	Models with single contacts	MY4-02	100/110 or 200/220 VAC	12, $24,110 / 120$, or 220/240 VAC
			12, 24 or 100/110 VDC	48 VDC
	Bifurcated contacts	MY4Z-02		100/110, 110/120, or 200/220 VAC
			100/110 VDC	12, 24, or 48 VDC

Note: 1. Ask your OMRON representative for details on the time required to deliver made-to-order products,
2. Ask your OMRON representative for details on product specifications and the ability to manufacture products with voltages other than the above coil specifications.

Ratings and Specifications

Ratings

Operating Coil (Standard Models)

ItemRated voltage (V)		Rated current (mA)		Coil resistance (Ω)	Coil inductance (H)		Must-operate voltage (V)	Must-release voltage (V)	Maximum voltage (V)	Power consumption(VA, W)
		50 Hz	60 Hz		Armature OFF	Armature ON				
AC	12	106.5	91	46	0.17	0.33	80\% max.*1	30\% min.*2	110% of rated voltage	Approx. 1.0 to 1.2 (at 60 Hz)
	24	53.8	46	180	0.69	1.3				
	100/110	11.7/12.9	10/11	3,750	14.54	24.6				
	110/120	9.9/10.8	8.4/9.2	4,430	19.2	32.1				Approx. 0.9 to 1.1
	200/220	6.2/6.8	5.3/5.8	12,950	54.75	94.07				(at 60 Hz)
	220/240	4.8/5.3	4.2/4.6	18,790	83.5	136.4				
DC	12	75		160	0.73	1.37		10\% min.*2		Approx. 0.9
	24	36.9		650	3.2	5.72				
	48	18.5		2,600	10.6	21.0				
	100/110	9.1/10		11,000	45.6	86.2				

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with tolerances of $+15 \% /-20 \%$ for the AC rated current and $\pm 15 \%$ for the DC coil resistance.
2. The AC coil resistance and inductance values are reference values only (at 60 Hz).
3. Operating characteristics were measured at a coil temperature of $23^{\circ} \mathrm{C}$.
4. The maximum voltage capacity was measured at an ambient temperature of $23^{\circ} \mathrm{C}$.
*1. There is variation between products, but actual values are 80% max.
To ensure operation, apply at least 80% of the rated value.
*2. There is variation between products, but actual values are 30% minimum for $A C$ and 10% minimum for $D C$. To ensure release, use a value that is lower than the specified value.
Contact Ratings

Number of poles Load Item	2 or 3 poles		4 poles		4 poles, bifurcated contacts	
	Resistive load	Inductive load $(\cos \varphi=0.4, \mathrm{~L} / \mathrm{R}=7 \mathrm{~ms})$	Resistive load	Inductive load $(\cos \varphi=0.4, \mathrm{~L} / \mathrm{R}=7 \mathrm{~ms})$	Resistive load	Inductive load $(\cos \varphi=0.4, \mathrm{~L} / \mathrm{R}=7 \mathrm{~ms})$
Rated load	5 A at 220 VAC 5 A at 24 VDC	$\begin{aligned} & \hline 2 \mathrm{~A} \text { at } 220 \mathrm{VAC} \\ & 2 \mathrm{~A} \text { at } 24 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & 3 \mathrm{~A} \text { at } 220 \mathrm{VAC} \\ & 3 \mathrm{~A} \text { at } 24 \mathrm{VDC} \end{aligned}$	0.8 A at 220 VAC 1.5 A at 24 VDC	$\begin{array}{\|l\|} \hline 3 \mathrm{~A} \text { at } 220 \mathrm{VAC} \\ 3 \mathrm{~A} \text { at } 24 \mathrm{VDC} \end{array}$	0.8 A at 220 VAC 1.5 A at 24 VDC
Rated carry current	5 A		3 A		3 A	
Maximum contact voltage	250 VAC, 125 VDC		250 VAC, 125 VDC		250 VAC, 125 VDC	
Maximum contact current	5 A		3 A		3 A	
Contact configuration	DPDT, 3PDT		4PDT		4PDT	
Contact structure	Single		Single		Bifurcated	
Contact materials	Ag		Au plating + Ag		Au plating + Ag	

Item	Type

with no IcIng or condensation.

Characteristics

Item	Number of poles	2 or 3 poles	4 poles	4 poles, bifurcated contacts
Contact resistance*1		$50 \mathrm{~m} \Omega$ max.		
Operation time*2		20 ms max.		
Release time*2		20 ms max.		
Maximum operating frequency	Mechanical	18,000 operations/h		
	Rated load	1,800 operations/h		
Insulation resistance*3		$100 \mathrm{M} \Omega$ min.		
Dielectric strength	Between coil and contacts	2,000 VAC at $50 / 60 \mathrm{~Hz}$ for 1 min .		
	Between contacts of different polarity			
	Between contacts of the same polarity	1,000 VAC at $50 / 60 \mathrm{~Hz}$ for 1 min .		
Vibration resistance	Destruction	10 to 55 to $10 \mathrm{~Hz}, 0.5-\mathrm{mm}$ single amplitude (1.0-mm double amplitude)		
	Malfunction	10 to 55 to $10 \mathrm{~Hz}, 0.5-\mathrm{mm}$ single amplitude (1.0-mm double amplitude)		
Shock resistance	Destruction	1,000 m/s ${ }^{2}$		
	Malfunction	$200 \mathrm{~m} / \mathrm{s}^{2}$		
Endurance	Mechanical	AC: 50,000,000 operations min. DC: 100,000,000 operations min. (switching frequency: 18,000 operations/h)		AC: 20,000,000 operations min. (switching frequency: 18,000 operations/h)
	Electrical*4	500,000 operations min. (rated load, switching frequency: 1,800 operations/h)	200,000 operations min. (rated load, switching frequency: 1,800 operations/h)	100,000 operations min. (rated load, switching frequency: 1,800 operations/h)

Item \quad Number of poles	2 or 3 poles	4 poles	4 poles, bifurcated contacts
Failure rate P value (reference value)*5	1 mA at 5 VDC	1 mA at 1 VDC	$100 \mu \mathrm{~A}$ at 1 VDC
Weight	Approx. 35 g		

Note: These are initial values.
*1. Measurement conditions: 1 A at 5 VDC using the voltage drop method
*2. Measurement conditions: With rated operating power applied.
Ambient temperature condition: $23^{\circ} \mathrm{C}$
*3. Measurement conditions: For 500 VDC applied to the same location as for dielectric strength measurement
*4. Ambient temperature condition: $23^{\circ} \mathrm{C}$
*5. This value was measured at a switching frequency of 120 operations per minute.

Dimensions

(Unit: mm)
Relays with PCB Terminals

MY $\square-02$

The figures and dimensions given here are for the MY4-02. The 2-pole and 3-pole models conform to these dimensions.

*Dimensions in parentheses are for the MY4-02.

PCB Processing Dimensions (Bottom View)

Note: 1. The dimensional tolerance is ± 0.1.
2. Refer to the terminal arrangement and internal connections diagrams for the MY2, MY3, MY4, and MY4Z.

Refer to the standards certifications and compliance section of your OMRON website for the latest information on certified models.

Ordering Information

When your order, specify the rated voltage.

Number of poles	Classification	Model	Rated voltage (V)	
			Standard products	Made-to-order items
2 poles	Models with single contacts	MY2F	24, 110/110, 100/120 or 200/220 VAC	220/240 VAC
			12 or 24 VDC	48 or 100/110 VDC
3 poles	Models with single contacts	MY3F	100/110 VAC	24 or 200/220 VAC
			-	24 or 100/110 VDC
4 poles	Models with single contacts	MY4F	100/110 or 200/220 VAC	24 or 110/120 VAC
			12 or 24 VDC	48 or 100/110 VDC
	Bifurcated contacts	MY4ZF	200/220 VAC	---
			-	12 or 24 VDC

Note: 1. Ask your OMRON representative for details on the time required to deliver made-to-order products.
2. Ask your OMRON representative for details on product specifications and the ability to manufacture products with voltages other than the above coil specifications.

Ratings and Specifications

Ratings

Operating Coil (Standard Models)

		Rated cur	nt (mA)		Coil induc	tance (H)	Must-operate	Release	Maximum	Power consumption
Rate	Oltage (V)	50 Hz	60 Hz	resistance (Ω)	Armature OFF	Armature ON	voltage (V)	voltage (V)	voltage (V)	(VA, W)
AC	24	53.8	46	180	0.69	1.3	80\% max.*1	30\% min.*2	110% of rated voltage	Approx. 1.0 to 1.2 (at 60 Hz)
	100/110	11.7/12.9	10/11	3,750	14.54	24.6				Approx. 0.9 to 1.1 (at 60 Hz)
	110/120	9.9/10.8	8.4/9.2	4,430	19.2	32.1				
	200/220	6.2/6.8	5.3/5.8	12,950	54.75	94.07				
	220/240	4.8/5.3	4.2/4.6	18,790	83.5	136.4				
DC	12	75		160	0.73	1.37		10\% min.*2		Approx. 0.9
	24	36.9		650	3.2	5.72				
	48	18.5		2,600	10.6	21.0				
	100/110	9.1/10		11,000	45.6	86.2				

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with tolerances of $+15 \% /-20 \%$ for the AC rated current and $\pm 15 \%$ for the DC coil resistance.
2. The AC coil resistance and inductance values are reference values only (at 60 Hz).
3. Operating characteristics were measured at a coil temperature of $23^{\circ} \mathrm{C}$.
3. The maximum voltage capacity was measured at an ambient temperature of $23^{\circ} \mathrm{C}$.
*1. There is variation between products, but actual values are 80% max.
There is variation between products, but actual values are
To ensure operation, apply at least 80% of the rated value
*2. There is variation between products, but actual values are 30% minimum for AC and 10% minimum for DC . To ensure release, use a value that is lower than the specified value.
Contact Ratings

Number of poles Load Item	2 or 3 poles		4 poles	
	Resistive load	$\begin{gathered} \text { Inductive load } \\ (\cos \varphi=0.4, \mathrm{~L} / \mathrm{R}=7 \mathrm{~ms}) \end{gathered}$	Resistive load	$\begin{gathered} \text { Inductive load } \\ (\cos \varphi=0.4, \mathrm{~L} / \mathrm{R}=7 \mathrm{~ms}) \end{gathered}$
Rated load	5 A at 220 VAC 5 A at 24 VDC	2 A at 220 VAC 2 A at 24 VDC	3 A at 220 VAC 3 A at 24 VDC	0.8 A at 220 VAC 1.5 A at 24 VDC
Rated carry current	5 A		3 A	
Maximum contact voltage	250 VAC, 125 VDC		250 VAC, 125 VDC	
Maximum contact current	5 A		3 A	
Contact configuration	DPDT, 3PDT		4PDT	
Contact structure	Single		Single	
Contact materials	Ag		Au plating + Ag	

Item	Type
Standard models	
Ambient operating temperature*	-55 to $70^{\circ} \mathrm{C}$
Ambient operating humidity	5% to 85%

* With no icing or condensation.

Characteristics

Item	Number of poles	2 or 3 poles	4 poles
Contact resistance*1		$50 \mathrm{~m} \Omega$ max.	
Operation time*2		20 ms max.	
Release time*2		20 ms max.	
Maximum operating frequency	Mechanical	18,000 operations/h	
	Rated load	1,800 operations/h	
Insulation resistance*3		$100 \mathrm{M} \Omega \mathrm{min}$.	
Dielectric strength	Between coil and contacts	2,000 VAC at $50 / 60 \mathrm{~Hz}$ for 1 min .	
	Between contacts of different polarity		
	Between contacts of the same polarity	1,000 VAC at $50 / 60 \mathrm{~Hz}$ for 1 min .	
Vibration resistance	Destruction	10 to 55 to $10 \mathrm{~Hz}, 0.5-\mathrm{mm}$ single amplitude (1.0-mm double amplitude)	
	Malfunction	10 to 55 to $10 \mathrm{~Hz}, 0.5-\mathrm{mm}$ single amplitude (1.0-mm double amplitude)	
Shock resistance	Destruction	1,000 m/s ${ }^{2}$	
	Malfunction	$200 \mathrm{~m} / \mathrm{s}^{2}$	
Endurance	Mechanical	AC: 50,000,000 operations min. DC: 100,000,000 operations min. (switching frequency: 18,000 operations/h)	
	Electrical*4	500,000 operations min. (rated load, switching frequency: 1,800 operations/h)	200,000 operations min. (rated load, switching frequency: 1,800 operations/h)

Item Number of poles	2 or 3 poles	4 poles
Failure rate P value (reference value)	1 mA at 5 VDC	1 mA at 1 VDC
Weight	Approx. 35 g	

Note: These are initial values
*1. Measurement conditions: 1 A at 5 VDC using the voltage drop method
*2. Measurement conditions: With rated operating power applied.
Ambient temperature condition: $23^{\circ} \mathrm{C}$
*3. Measurement conditions: For 500 VDC applied to the same location as for dielectric strength measurement
*4. Ambient temperature condition: $23^{\circ} \mathrm{C}$
$* 5$. This value was measured at a switching frequency of 120 operations per minute.

Dimensions

Case-surface mounting

 MY $\square \mathbf{F}$

The above figure is for the MY4F.

Mounting Hole Dimensions

Note: Refer to the terminal arrangement and internal connections diagrams for the MY2, MY3, MY4, and MY4Z.

Engineering Data MY2, MY3, MY4, MY4Z, MY \square-02, and MY $\square F$

Engineering Data

Maximum Switching Capacity MY2 and MY3

MY4 and MY4Z

Endurance Curve

MY2 and MY3

MY4

MY4Z

MY2 and MY3

MY4

MY4Z

Ambient Temperature vs.
Must-operate and Must-release Voltage MY2 AC Models

MY2 DC Models

MY4 AC Models

MY4 DC Models

Ambient Temperature vs. Coil Temperature Rise

MY2 AC Models, 50 Hz

MY4 AC Models, 50 Hz

MY2 DC Models

MY4 DC Models

Ambient temperature $\left({ }^{\circ} \mathrm{C}\right)$
Models with built-in diodes
The diode absorbs surge from the coil. This type is best suited for applications with semiconductor circuits. With Diode

Without Diode

Note: 1. Mak
2. The release time will increase, but the $20-\mathrm{ms}$ specification for standard models is satisfied
3. Diode properties:The diode has a reversed dielectric strength of $1,000 \mathrm{~V}$. Forward current: 1 A

Models with Built-in CR Circuits

With CR

Without CR

Engineering Data MY(S)

Engineering Data

Maximum Switching Capacity MY2(S)

MY4(S) and MY4Z(S)

Endurance Curve

MY2(S)

Y4(S)

MY4Z(S)

Common Specifications for MY2, MY3, MY4, MY4Z, MY \square-02, MY $\square F$, and MY(S) Malfunctioning Shock

Detailed Information on Models Certified for Safety Standards, MY2Z, MY3, MY $\square-02$, and MY $\square F$

- Refer to Model Number Structure on page 1 for a list of applicable models.
- The standard models are certified for UL and CSA standards.
- The rated values for safety standard certification are not the same as individually defined performance values. Always check the specifications before use.

TUV-certified Models (File No. R50030059)

Model	Coil ratings	Number of poles	Contact ratings	Certified number of operations
MY \square	$\begin{gathered} 6 \text { to } 125 \\ \text { VDC } \\ 6 \text { to } 240 \\ \text { VDC } \end{gathered}$	2	$5 \mathrm{~A}, 250 \mathrm{VAC}(\cos \varphi=1.0)$	10,000 operations
		3	$5 \mathrm{~A}, 250$ VAC $(\cos \varphi=1.0)$ $0.8 \mathrm{~A}, 250 \mathrm{VAC}(\cos \varphi=$ 0.4)	
		4	$3 \mathrm{~A}, 120 \mathrm{VAC}(\cos \varphi=1.0)$ $0.8 \mathrm{~A}, 120$ VAC $(\cos \varphi=$ 0.4)	

UL-certified Models (File No. E41515) Fis

Model	Coil ratings	Number of poles	Contact ratings	Certified number of operations
MY	$\begin{gathered} 6 \text { to } 240 \\ \text { VAC } \\ 6 \text { to } 125 \\ \text { VDC } \end{gathered}$	2	7A, 240 VAC (General Use)	6,000
			7A, 24 VDC (Resistive)	
			5A, 240 VAC (General Use)	
			5A, 250 VAC (Resistive)	
			5A, 30 VDC (Resistive)	
			3A, 265 VAC (Resistive)	
			1/6HP, 250 VAC	1,000
			1/8HP, 265 VAC	
			1/10HP, 120 VAC	
			B300 Pilot Duty	6,000
		3	5A, 28 VDC (Resistive)	6,000
			5A, 240 VAC (General Use)	
			1/6 HP, 250 VAC	1,000
		4	5A, 28 VDC (General Use) (Same polarity)	6,000
			5A, 240 VAC (General Use) (Same polarity)	
			5A, 30 VDC (Resistive) (Same polarity)	
			5A, 250 VAC (Resistive) (Same polarity)	
			0.2A, 120 VDC (Resistive) (Same polarity)	
			1/6HP, 250 VAC (Same polarity)	1,000
			1/10HP, 120 VAC (Same polarity)	
			B300 Pilot Duty (Same polarity)	6,000

CSA-certified Models (File No. LR31928) (1)

Model	Coil ratings	Number of poles	Contact ratings	Certified number of operations
MY	6 to 240 VAC 6 to 125 VDC	2	7A, 240 VAC (Resistive)	6,000
			7A, 24 VDC (Resistive)	
			5A, 240 VAC (General Use)	
			5A, 250 VAC (Resistive)	
			5A, 30 VDC (Resistive)	
			1/6HP, 250 VAC	1,000
			1/10HP, 120 VAC	
		3	5A, 28 VDC (Resistive)	6,000
			7A, 240 VAC (General Use)	
			7A, 24 VDC (Resistive)	
			5A, 240 VAC (General Use)	
			1/6HP, 250 VAC	1,000
		4	7A, 240 VAC (General Use) (Same polarity)	6,000
			7A, 24 VDC (Resistive) (Same polarity)	
			5A, 240 VAC (General Use) (Same polarity)	
			5A, 30 VDC (Resistive)	
			5A, 250 VAC (Resistive) (Same polarity)	
			0.2A, 120 VDC (Resistive)	
			1/6HP, 250 VAC	1,000
			1/10HP, 120 VAC	

- When ordering models that are certified for Lloyd's Register (LR) Standards, be sure to specify "LR-certified Model" with your order.

LR-certified Models (File No. 90/10270)

Model	Coil ratings	Number of poles	Contact ratings
MY \square	6 to 240 VAC 6 to 125 VDC	2	2 A, 30 VDC inductive load 2 A, 200 VAC inductive load
	4	1.5 A, 30 VDC inductive load 0.8 A, 200 VAC inductive load $1.5 \mathrm{~A}, 115$ VAC inductive load	

Detailed Information on Models Certified for Safety Standards, MY2, MY4, MY4Z, and MY(S) Newly Released Models

- Refer to Model Number Structure on page 1 for a list of applicable models.

VDE-certified Models (Certificate No. 112467UG, EN 61810-1)

Model	Coil ratings	Number of poles	Contact ratings	Certified number of operations
MY \square (New model)	$\begin{aligned} & \hline 6,12,24,48 / 50,100 / \\ & 110,110 / 120,200 / \end{aligned}$	2	$10 \mathrm{~A}, 250 \operatorname{VAC}(\cos \varphi=1)$ $10 \mathrm{~A}, 30 \mathrm{VDC}(\mathrm{L} / \mathrm{R}=0 \mathrm{~ms})$	MY2: 10,000 operations MY4: 100,000 operations MY4Z: 50,000 operations (AC)
	6, 12, 24, 48, 100/ 110, and 125 VDC	4	$5 \mathrm{~A}, 250 \mathrm{VAC}(\cos \varphi=1)$ $5 \mathrm{~A}, 30 \mathrm{VDC}$ (L/R = 0 ms)	

UL508-certified Models (File E41515)

Model	Coil ratings	Number of poles	Contact ratings	Certified number of operations
MY \square (New model)	6 to 240 VAC 6 to 125 VDC	2	10A, 250 VAC (General Use)	6,000
			10A, 30 VDC (General Use)	
			7A, 240 VAC (General Use)	
			7A, 24 VDC (Resistive)	
			5A, 240 VAC (General Use)	
			5A, 250 VAC (Resistive)	
			5A, 30 VDC (Resistive)	
			3A, 265 VAC (Resistive)	
			1/6HP, 250 VAC	1,000
			1/8HP, 265 VAC	
			1/10HP, 120 VAC	
			B300 Pilot Duty (Same polarity)	6,000
		4	5A, 28 VDC (General Use) (Same polarity)	6,000
			5A, 240 VAC (General Use) (Same polarity)	
			5A, 30 VDC (Resistive) (Same polarity)	
			5A, 250 VAC (Resistive) (Same polarity)	
			0.2A, 120 VDC (Resistive) (Same polarity)	
			1/6HP, 250 VAC (Same polarity)	1,000
			1/10HP, 120 VAC (Same polarity)	
			B300 Pilot Duty (Same polarity)	6,000

CSA 22.2 No. 14-certified Models (File No. LR31928)

Model	Coil ratings	Number of poles	Contact ratings	Certified number of operations
MY \square (New model)	6 to 240 VAC 6 to 125 VDC	2	7A, 240 VAC (General Use)	6,000
			7A, 24 VDC (Resistive)	
			5A, 240 VAC (General Use)	
			5A, 250 VAC (Resistive)	
			5A, 30 VDC (Resistive)	
			3A, 265 VAC (Resistive)	
			1/6HP, 250 VAC	1,000
			1/8HP, 265 VAC	
			1/10HP, 120 VAC	
			B300 Pilot Duty (Same polarity)	6,000
		4	5A, 240 VAC (General Use) (Same polarity)	6,000
			5A, 28 VDC (General Use) (Same polarity)	
			5A, 250 VAC (Resistive) (Same polarity)	
			5A, 30 VDC (Resistive) (Same polarity)	
			0.2A, 120 VDC (Resistive) (Same polarity)	
			1/6HP, 250 VAC (Same polarity)	1,000
			1/10HP, 120 VAC (Same polarity)	
			B300 Pilot Duty (Same polarity)	6,000

LR-certified Models (File No. 98/10014)

Model	Coil ratings	Number of poles	Contact ratings	Certified number of operations
MY \square (New model)	6 to 240 VAC 6 to 125 VDC	2	$10 \mathrm{~A}, 250$ VAC (resistive) 2 A, 250 VAC (PF0.4) $10 \mathrm{~A}, 30$ VDC (resistive) $2 \mathrm{~A}, 30 \mathrm{VDC}$ ($\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}$)	MY2: 50,000 operations MY4: 50,000 operations
		4	5 A, 250 VAC (resistive) $0.8 \mathrm{~A}, 250$ VAC (PF0.4) $5 \mathrm{~A}, 30 \mathrm{VDC}$ (resistive) $1.5 \mathrm{~A}, 30 \mathrm{VDC}(\mathrm{L} / \mathrm{R}=7 \mathrm{~ms})$	

Miniature Power Relays: MY4Z-CBG

Ordering Information

Classification	Model	Rated voltage (V)	
		Standard products	Made-to-order items
Standard models	MY4Z-CBG	$\mathbf{1 0 0 / 1 1 0}$ or 200/220 VAC	$110 / 120$ VAC
		$\mathbf{2 4}$ or 100/110 VDC	12 or 48 VDC
Models with built-in operation indicators	MY4ZN-CBG	-	$100 / 110$ or 200/220 VAC
		-	24 VDC

Note: Ask your OMRON representative for details on the time required to deliver made-to-order products.

Ratings and Specifications

Ratings

Operating Coil

ItemRated voltage (V)		Rated current (mA)		Coil resistance (Ω)	Coil inductance (H)		Must-operate voltage (V)	Must-release voltage (V)	Maximum voltage (V)	Power consumption (VA, W)
		50 Hz	60 Hz		Armature OFF	Armature ON				
AC	100/110	11.7/12.9	10/11	3,750	14.54	24.6	80\% max.*1	30\% min.*2	$\begin{aligned} & \text { 110\% of } \\ & \text { rated } \\ & \text { voltage } \end{aligned}$	$\begin{aligned} & \text { Approx. } 0.9 \text { to } 1.1 \\ & (\text { at } 60 \mathrm{~Hz}) \end{aligned}$
	110/120	9.9/10.8	8.4/9.2	4,430	19.2	32.1				
	200/220	6.2/6.8	5.3/5.8	12,950	54.75	94.07				
DC	12	75		160	0.73	1.37		10\% min.*2		Approx. 0.9
	24	36.9		650	3.2	5.72				
	100/110	9.1/10		11,000	45.60	86.20				

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with tolerances of $+15 \% /-20 \%$ for the AC rated current and $\pm 15 \%$ for the DC coil resistance.
2. The AC coil resistance and inductance values are reference values only
3. Operating characteristics were measured at a coil temperature of $23^{\circ} \mathrm{C}$.
4. The maximum voltage capacity was measured at an ambient temperature of $23^{\circ} \mathrm{C}$.
*1. There is variation between products, but actual values are 80% max.
To ensure operation, apply at least 80% of the rated value
*2. There is variation between products, but actual values are 30% minimum for AC and 10% minimum for DC. To ensure release, use a value that is lower than the specified value

Contact Ratings

| Item | Road | $\begin{array}{l}\text { Inductive load } \\ \text { (cos } \varphi=0.4, ~ L / R ~\end{array}=7 \mathrm{~ms}$) |
| :--- | :--- | :--- |$\}$

Characteristics

Contact resistance*1		$100 \mathrm{~m} \Omega$ max.
Operation time*2		20 ms max.
Release time*2		20 ms max.
Maximum operating frequency	Mechanical	18,000 operations/h
	Electrical	1,800 operations/h
Insulation resistance*3		$100 \mathrm{M} \Omega$
Dielectric strength	Between coil and contacts	2,000 VAC at $50 / 60 \mathrm{~Hz}$ for 1 min .
	Between contacts of different polarity	
	Between contacts of the same polarity	700 VAC at $50 / 60 \mathrm{~Hz}$ for 1 min .
Vibration resistance	Destruction	10 to 55 to $10 \mathrm{~Hz}, 0.5-\mathrm{mm}$ single amplitude ($1.0-\mathrm{mm}$ double amplitude)
	Malfunction	10 to 55 to $10 \mathrm{~Hz}, 0.5-\mathrm{mm}$ single amplitude ($1.0-\mathrm{mm}$ double amplitude)
Shock resistance	Destruction	$1,000 \mathrm{~m} / \mathrm{s}^{2}$
	Malfunction	$200 \mathrm{~m} / \mathrm{s}^{2}$
Endurance	Mechanical	5,000,000 operations min. (operating frequency: 18,000 operations/hr)
	Electrical*4	50,000 operations min. (switching frequency: 1,800 operations $/ \mathrm{h}$) at rated load
Failure rate P value (reference value)*5		$100 \mu \mathrm{~A}$ at 1 VDC
Ambient operating temperature		-25 to $70^{\circ} \mathrm{C}$ (with no icing or condensation)
Ambient operating humidity		5\% to 85\%
Weight		Approx. 35 g

Note: The above values are initial values.
*1. Measurement conditions: 1 A at 5 VDC using the voltage drop method
*2. Measurement conditions: With rated operating power applied, not including contact bounce. Ambient temperature condition: $23^{\circ} \mathrm{C}$
*3. Measurement conditions: For 500 VDC applied to the same location as for dielectric strength measurement.
*4. Ambient temperature condition: $23^{\circ} \mathrm{C}$
*5. This value was measured at a switching frequency of 120 operations per minute.

Engineering Data

Engineering Data

Maximum Switching Capacity

MY4Z-CBG

Contact Reliability Test (Modified Allen Bradley Circuit)
Contact load: 5 VDC, 1 mA resistive load
Malfunction criteria level: Contact resistance of 100Ω

Dimensions

MY4Z-CBG

Terminal Arrangement/Internal Connections (Bottom View) Standard Models

Safety Precautions

Refer to the Common Relay Precautions.

Applicable Sockets

Use only combinations of OMRON Relays and Sockets.

Plastic Sealed Relays: MYQ

Ordering Information

Relays with Plug-in or Soldered

 TerminalsWhen your order, specify the rated voltage.

Classification ${ }^{\text {Type }}$		4 poles	
		Model	Rated voltage (V)
Models with single contacts	Standard models	MYQ4	100/110, 110/ 120, 200/220, or 220/240 VAC
			24 VDC
	Models with builtin operation indicators	MYQ4N	$\begin{aligned} & 24,100 / 110, \\ & 110 / 120, \\ & 200 / 220, \text { or } \\ & 220 / 240 \text { VAC } \end{aligned}$
			$12,24,48$, or 100/110 VDC
Bifurcated contacts	Standard models	MYQ4Z	$\begin{aligned} & \text { 100/110, } \\ & \text { 110/120, or } \\ & \text { 200/220 VAC } \end{aligned}$
			12 or 24 VDC

Relays with PCB Terminals

Type	4 poles	
	Model	Rated voltage (V)
Models with single contacts	MYQ4-02	$50,200 / 220$, or $220 / 240$ VAC
Bifurcated contacts	MYQ4Z-02	$100 / 110$ VAC

Ratings and Specifications

Ratings

Operating Coil

ItemRated voltage (V)		Rated current (mA)		Coil resistance (Ω)	Coil inductance (H)		Mustoperate voltage (V)	Mustrelease voltage (V)	Maximum voltage (V)	Power consumpti on (VA, W)
		50 Hz	60 Hz		Armature OFF	Armature ON				
AC	24	53.8	46	180	0.69	1.3	$\begin{aligned} & 80 \% \\ & \text { max.*1 } \end{aligned}$	$\begin{aligned} & 30 \% \\ & \text { min.*2 } \end{aligned}$	110% of rated voltage	Approx. 1.0 to 1.2 (at $60 \mathrm{~Hz})$
	100/110	11.7/12.9	10/11	3,750	14.54	24.6				
	110/120	9.9/10.8	8.4/9.2	4,430	19.2	32.1				
	200/220	6.2/6.8	5.3/5.8	12,950	54.75	91.07				
	220/240	4.8/5.3	4.2/4.6	18,790	83.5	136.4				
DC	12	75		160	0.734	1.37		$\begin{aligned} & 10 \% \\ & \text { min.*2 } \end{aligned}$		Approx. 0.9
	24	36.9		650	3.2	5.72				
	48	18.5		2,600	10.6	21.0				
	100/110	9.1/10		11,000	45.6	86.0				

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with tolerances of $+15 \% /-20 \%$ for AC rated current and $\pm 15 \%$ for DC coil resistance.
2. The AC coil resistance and coil inductance values are reference values only.
3. Operating characteristics were measured at a coil temperature of $23^{\circ} \mathrm{C}$.
4. The maximum voltage capacity was measured at an ambient temperature of $23^{\circ} \mathrm{C}$.
*1. There is variation between products, but actual values are 80% max.
There is variation between products, but actual values are
*2. There is variation between products, but actual values are 30% minimum for $A C$ and 10% minimum for DC To ensure release, use a value that is lower than the specified value.
Contact Ratings

Type Item	Resistive load	$\begin{gathered} \text { Inductive load } \\ (\cos \varphi=0.4, \mathrm{~L} / \mathrm{R}=7 \mathrm{~ms}) \end{gathered}$
Rated load	1 A at 220 VAC, 1 A at 24 VDC	0.5 A at 220 VAC, 0.5 A at 24 VDC
Rated carry current	1 A	
Maximum contact voltage	250 VAC, 125 VDC	
Maximum contact current	1 A	
Maximum switching capacity (reference value)	220 VAC, 24 W	110 VAC, 12 W
Failure rate P value (reference value)	Single contacts: 1 mA at 1 VDC, Bifurcated contacts: $100 \mu \mathrm{~A}$ at 1 VDC	
Contact structure	Single/bifurcated	
Contact materials	Au plating + Ag	

* This value was measured at a switching frequency of 120 operations per minute.

Ambient operating temperature	-55 to $60^{\circ} \mathrm{C}^{*}$
Ambient operating humidity	5% to 85%

* With no icing or condensation.

Characteristics

Contact resistance*1		$50 \mathrm{~m} \Omega$ max.
Operation time*2		20 ms max .
Release time*2		20 ms max .
Maximum operating frequency	Mechanical	18,000 operations/h
	Rated load	1,800 operations/h
Dielectric strength	Between coil and contacts	1,500 VAC at $50 / 60 \mathrm{~Hz}$ for 1 min .
	Between contacts of different polarity	$1,500 \mathrm{VAC}$ at $50 / 60 \mathrm{~Hz}$ for 1 min .
	Between contacts of the same polarity	1,000 VAC at $50 / 60 \mathrm{~Hz}$ for 1 min .
Insulation resistance*3		$100 \mathrm{M} \Omega \mathrm{min}$.
Vibration resistance	Destruction	10 to 55 to $10 \mathrm{~Hz}, 0.5-\mathrm{mm}$ single amplitude (1.0-mm double amplitude)
	Malfunction	10 to 55 to $10 \mathrm{~Hz}, 0.5-\mathrm{mm}$ single amplitude (1.0-mm double amplitude)
Shock resistance	Destruction	1,000 m/s ${ }^{2}$
	Malfunction	$200 \mathrm{~m} / \mathrm{s}^{2}$
Endurance	Mechanical	AC: 50,000,000 operations ($5,000,000^{* 4}$) min., DC: 100,000,000 operations $\left(5,000,000^{* 4}\right) \mathrm{min}$. (switching frequency: 18,000 operations/h)
	Electrical*5	200,000 operations min. (100,000 operations ${ }^{* 4}$) (rated load, switching frequency: 1,800 operations/h)
Weight		Approx. 35 g

Note: The values at the left are initial values.
*1. Measurement conditions: 1 A at 5 VDC using the voltage drop method
*2. Measurement conditions: With rated operating power applied, not including contact bounce Ambient temperature condition: $23^{\circ} \mathrm{C}$
*3. Measurement conditions: For 500 VDC applied to the same location as for dielectric strength
measurement
*4. This value is for bifurcated contacts.
*5. Ambient temperature condition: $23^{\circ} \mathrm{C}$

Engineering Data

Engineering Data

Maximum Switching Capacity MYQ4(Z)

Endurance Curve
MYQ4

Note: The durability of bifurcated contacts is one-half that of single contacts.
$\mathrm{H}_{2} \mathrm{~S}$ Gas Data
MYQ4

Malfunctioning Shock

Dimensions

Relays with Plug-in Terminals

 or Soldered TerminalsMYQ4(Z)(N)

Relays with PCB Terminals MYQ4(Z)-02

PCB Processing Dimensions

Terminal Arrangement/Internal Connections (Bottom View) Standard Models

Safety Precautions

- For models with built-in operation indicators, check the coil polarity when wiring and wire all connections correctly (DC operation).
- Use only combinations of OMRON Relays and Sockets
- The UL and CSA certifications for this model are the same as for the MY402.

Relay Replacement

To replace the Relay, turn OFF the power supply to the load and Relay coil sides to prevent unintended operation and possible electrical shock.

Latching Relays MYK
 Ordering information

Relays with Plug-in or Soldered Terminals

Number of poles Classification	2 poles	
	Model	Rated voltage (V)
		12 VAC
		24 VAC
		100 VAC
		$100 / 110 \mathrm{VAC}$
		12 VDC
		24 VDC

Relays with PCB Terminals

Number of poles	2 poles	
Classification	Model	Rated voltage (V)
Standard models		24 VAC
		100 VAC
		12 VDC
		24 VDC

Ratings and Specifications

Ratings

Operating Coil

			Set co			Reset					Power cons	ption (VA, W)
		Rated cu	ent (mA)	Coil	Rated cu	ent (mA)	Co	Set voltage	Reset	Maximum		
Rated	tage (V)	50 Hz	60 Hz	resistance (Ω)	50 Hz	60 Hz	resistance (Ω)				Set coil	Reset coil
AC	12	57	56	72	39	38.2	130	80\% max.	80\% max.	110% max. of rated voltage	$\begin{aligned} & \text { Approx. } 0.6 \\ & \text { to } 0.9 \\ & \text { (at } 60 \mathrm{~Hz} \text {) } \end{aligned}$	$\begin{aligned} & \text { Approx. } 0.2 \\ & \text { to } 0.5 \\ & \text { (at } 60 \mathrm{~Hz} \text {) } \end{aligned}$
	24	27.4	26.4	320	18.6	18.1	550					
	100	7.1	6.9	5,400	3.5	3.4	3,000					
DC	12	110		110	50		235				Approx. 1.3	
	24	52		470	25		940					Approx. 0.6
	48	27		1,800	16		3,000					

Note: 1. The rated current for AC is the value measured with a DC ammeter in half-wave rectification.
2. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with tolerances of $+15 \% /-20 \%$ for the AC rated current and $\pm 15 \%$ for the DC coil resistance.
3. The AC coil resistance is a reference value only.
4. Operating characteristics were measured at a coil temperature of $23^{\circ} \mathrm{C}$.
5. The maximum voltage capacity was measured at an ambient temperature of $23^{\circ} \mathrm{C}$.

Contact Ratings

Item	Resistive load	Inductive load (cos $\varphi=0.4$, L/R $=7 \mathrm{~ms})$
Rated load	3 A at 220 VAC 3 A at 24 VDC	0.8 A at 220 VAC 1.5 A at 24 VDC
Rated carry current	3 A	
Maximum contact voltage	250 VAC, 125 VDC	
Maximum contact current	3 A	3 A
Contact structure	Single	
Contact materials	Au plating + Ag	

Ambient operating temperature	-55 to $60^{\circ} \mathrm{C}^{*}$
Ambient operating humidity	5% to 85%

* With no icing or condensation.

Characteristics

Contact resistance*1		$50 \mathrm{~m} \Omega$ max.
Set	Time*2	AC: 30 ms max., DC: 15 ms max.
	Minimum pulse width	AC: 60 ms , DC: 30 ms
Reset	Time*2	AC: 30 ms max., DC: 15 ms max.
	Minimum pulse width	AC: 60 ms , DC: 30 ms
Maximum operating frequency	Mechanical	18,000 operations/h
	Rated load	1,800 operations/h
Insulation resistance*3		$100 \mathrm{M} \Omega$
Dielectric strength	Between coil and contacts	1,500 VAC at $50 / 60 \mathrm{~Hz}$ for 1 min .
	Between contacts of different polarity	
	Between contacts of the same polarity	$1,000 \mathrm{VAC}$ at $50 / 60 \mathrm{~Hz}$ for 1 min .
	Between set/ reset coils	
Vibration resistance	Destruction	10 to 55 to $10 \mathrm{~Hz}, 0.5-\mathrm{mm}$ single amplitude ($1.0-\mathrm{mm}$ double amplitude)
	Malfunction	10 to 55 to $10 \mathrm{~Hz}, 0.5-\mathrm{mm}$ single amplitude ($1.0-\mathrm{mm}$ double amplitude)
Shock resistance	Destruction	1,000 m/s ${ }^{2}$
	Malfunction	$200 \mathrm{~m} / \mathrm{s}^{2}$
Endurance	Mechanical	100,000,000 operations min. (switching frequency: 18,000 operations/h)
	Electrica**4	200,000 operations min. (at 1,800 operations/hr, rated load)
Failure rate P value (reference value)*5		1 mA at 1 VDC
Weight		Approx. 30 g

Note: The above values are initial values
*1. Measurement conditions: 1 A at 5 VDC using the voltage drop method
*2. Measurement conditions: With rated operating power applied, not including contact bounce.
*3. Measurement conditions: For 500 VDC applied to the same location as for dielectric strength measurement.
*4. Ambient temperature condition: $23^{\circ} \mathrm{C}$
$* 5$. This value was measured at a switching frequency of 120 operations per minute.

Engineering Data

Engineering Data

MY2K(-02)

Maximum Switching Capacity

MY2K 100 VAC
Malfunctioning Shock

Endurance Curve

Contact current (A)

MY2K 24 VDC
Magnetic Interference (External Magnetic Field)

Latching Deterioration Over Time

Measurement: Shock was applied 2 times each in 6 directions along 3 axes with the Relay energized and not energized to check the shock values that cause the Relay to malfunction. Criteria: Non-energized: $200 \mathrm{~m} / \mathrm{s}^{2}$ Energized: 200 m/s²

Dimensions
Relays with Plug-in Terminals
or Soldered Terminals
MY2K

Ten, 1.2-dia. $\times 2.2$ oval holes

Relays with PCB Terminals

 MY2K-02

PCB Processing Dimensions (Bottom View) For DC
Note: The dimensional tolerance is ± 0.1.

Terminal Arrangement/Internal Connections (Bottom View)

For AC

Note: R is a resistor for ampereturn correction. This resistor is built-in to $50-$ VAC and higher models. (The coil has no polarity.)

Note: Pay close attention to the set coil and reset coil polarities. If the connections are not correct, unintended operation may occur.
(Unit: mm)

Safety Precautions

- For applications that use a 200 VAC power supply, connect external resistors Rs and Rr to a 100 VAC Relay.

- Do not apply a voltage to the set and reset coils at the same time. If you apply the rated voltage to both coils simultaneously, the Relay will be set.
- The minimum pulse width in the performance column is the value for the following measurement conditions: an ambient temperature of $23^{\circ} \mathrm{C}$ with the rated operating voltage applied to the coil. The performance values given here may not be satisfied due to use over time and a reduction in latching performance due to changes in the ambient temperature or in the conditions of the application circuit.
For actual use, apply the rated operating voltage with a pulse width based on the actual load and reset the Relay at least once per year to prevent degradation over time.
- If the Relay is used in an environment with strong magnetic fields, the surrounding magnetic field can demagnetize the magnetic body and cause unintended operation. Therefore, do not use these Relays in environments with strong magnetic fields.

Relay Replacement

To replace the Relay, turn OFF the power supply to the load and Relay coil sides to prevent unintended operation and possible electrical shock.

Applicable Sockets

Use only combinations of OMRON Relays and Sockets.

Hermetically Sealed Relays: MYH

Ordering Information

Relays with Plug-in or Soldered Terminals

Type	4 poles	
	Model	Rated voltage (V)
Models with single contacts	MY4H	$24,100 / 110$, or 110/120 VAC
		$12,24,48$, or $100 / 110$ VDC
Bifurcated contacts	MY4ZH	$24,100 / 110$, or $110 / 120$ VAC
		$12,24,48$, or $100 / 110$ VDC

Relays with PCB Terminals

Type	4 poles	
	Model	Rated voltage (V)
Models with single contacts	MY4H-0	$110 / 120$ VAC
Bifurcated contacts	MY4ZH-0	24 or $100 / 110$ VDC

Ratings and Specifications

Ratings

Operating Coil

Item Rated voltage (V)		Rated current (mA)		Coil resistance (Ω)	Coil inductance (H)		Must-operate voltage (V)	Must-release voltage (V)	Maximum voltage (V)	Power consumption (VA, W)
		50 Hz	60 Hz		Armature OFF	Armature ON				
AC	24	53.8	46	180	0.69	1.3	80\% max.*1	30\% min.*2	$\begin{aligned} & 110 \% \text { of } \\ & \text { rated voltage } \end{aligned}$	Approx. 1.0 to 1.2 (at 60 Hz)
	100/110	11.7/12.9	10/11	3,750	14.54	24.6				
	110/120	9.9/10.8	8.4/9.2	4,430	19.2	32.1				
DC	12	75		160	0.73	1.37		10\% min.*2		Approx. 0.9
	24	36.9		650	3.2	5.72				
	48	18.5		2,600	10.6	21.0				
	100/110	9.1/10		11,000	45.6	86.2				

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with tolerances of $+15 \% /-20 \%$ for the AC rated current and $\pm 15 \%$ for the DC coil resistance.
2. The AC coil resistance and inductance values are reference values only
3. Operating characteristics were measured at a coil temperature of $23^{\circ} \mathrm{C}$.
4. The maximum voltage capacity was measured at an ambient temperature of $23^{\circ} \mathrm{C}$.
*1. There is variation between products, but actual values are 80% max.
To ensure operation, apply at least 80% of the rated value
*2. There is variation between products, but actual values are 30% minimum for $A C$ and 10% minimum for DC. To ensure release, use a value that is lower than the specified value

Contact Ratings

Ltem	Models with single contacts		Bifurcated contacts	
	Resistive load	$\begin{aligned} & \text { Inductive load } \\ & \cos \varphi=0.4 \\ & L / R=7 \mathrm{~ms} \end{aligned}$	Resistive load	$\begin{aligned} & \text { Inductive load } \\ & \cos \varphi=0.4 \\ & L / R=7 \mathrm{~ms} \end{aligned}$
Rated load	3 A at 110 VAC 3 A at 24 VDC	$\begin{aligned} & \hline 0.8 \mathrm{~A} \text { at } 110 \mathrm{VAC} \\ & 1.5 \mathrm{~A} \text { at } 24 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & 3 \mathrm{~A} \text { at } 110 \mathrm{VAC} \\ & 3 \mathrm{~A} \text { at } 24 \mathrm{VDC} \end{aligned}$	$\begin{array}{\|l\|} \hline 0.8 \mathrm{~A} \text { at } 110 \mathrm{VAC} \\ 1.5 \mathrm{~A} \text { at } 24 \mathrm{VDC} \\ \hline \end{array}$
Rated carry current	3 A		3 A	
Maximum contact voltage	$\begin{aligned} & \hline 125 \text { VAC } \\ & 125 \text { VDC } \end{aligned}$		$\begin{aligned} & 125 \text { VAC } \\ & 125 \text { VDC } \end{aligned}$	
Maximum contact current	3 A		3 A	
Contact structure	Single		Bifurcated	
Contact materials	Au plating + Ag			
Ambient operating temperature	-25 to $60^{\circ} \mathrm{C}^{*}$			
Ambient operating humidity	5\% to 85\%			

* With no icing or condensation.

Characteristics

Contact resistance*1		$50 \mathrm{~m} \Omega$ max.
Operation time*2		20 ms max .
Release time*2		20 ms max .
Maximum operating frequency	Mechanical	18,000 operations/h
	Rated load	1,800 operations/h
Insulation resistance*4		$100 \mathrm{M} \Omega \mathrm{min}$.
Dielectric strength	Between coil and contacts	1,000 VAC at $50 / 60 \mathrm{~Hz}$ for 1 min . (700 VAC between contacts of the same polarity.)
	Between contacts of different polarity	
Vibration resistance	Destruction	10 to 55 to $10 \mathrm{~Hz}, 0.5-\mathrm{mm}$ single amplitude ($1.0-\mathrm{mm}$ double amplitude)
	Malfunction	10 to 55 to $10 \mathrm{~Hz}, 0.5-\mathrm{mm}$ single amplitude ($1.0-\mathrm{mm}$ double amplitude)
Shock resistance	Destruction	$1,000 \mathrm{~m} / \mathrm{s}^{2}$
	Malfunction	$200 \mathrm{~m} / \mathrm{s}^{2}$
Endurance	Mechanical	$50,000,000$ operations ($5,000,000$ operations**) min. (operating frequency: 18,000 operations $/ \mathrm{h}$)
	Electrica**	100,000 operations (50,000 operations*4) min. rated load, switching frequency: 1,800 operations/h)
Failure rate P value (reference value)* ${ }^{* 6}$		Single contacts: $100 \mu \mathrm{~A}$ at 1 VDC Bifurcated contacts: $100 \mu \mathrm{~A}$ at 100 mVDC
Weight		Approx. 50 g

Note: The above values are initial values.
*1. Measurement conditions: 1 A at 5 VDC using the voltage drop method
*2. Measurement conditions: With rated operating power applied, not including contact bounce.
Ambient temperature condition: $23^{\circ} \mathrm{C}$
*3. Measurement conditions: For 500 VDC applied to the same location as for dielectric strength measurement
$* 4$. This value is for bifurcated contacts.
*5. Ambient temperature condition: $23^{\circ} \mathrm{C}$
*6. This value was measured at a switching frequency of 120 operations per minute.

Engineering Data

Engineering Data Maximum Switching Capacity MY4(Z)H

Endurance Curve MY4H

Note: The durability of bifurcated contacts is one-half that of single contacts.

Dimensions

Relays with Plug-in Terminals or Soldered Terminals

Safety Precautions

PCB Design for Hermetically Sealed Relays

When a Relay with PCB Terminals is mounted, a short-circuit can occur depending on the design of the PCB pattern because the Relay itself is made out of metal.

Solution

Refer to the external dimensions of the Relay and design the PCB pattern with enough space to prevent this problem.

Applicable Sockets

Use only combinations of OMRON Relays and Sockets.

Application Environment for Hermetically Sealed Relays

Humid environments can cause insulation problems, which may result in shortcircuiting or unintended operation.

Solution

Do not use these Relays in any environment where the Relay will come into contact with water vapor, condensation, or water droplets. This can reduce the surface tension of the insulating beads and cause short-circuiting or unintended operation due to poor insulation.

Relay Replacement

To replace the Relay, turn OFF the power supply to the load and Relay coil sides to prevent unintended operation and possible electrical shock.

Options (Order Separately)

Connection Socket and Mounting Bracket Selection Table

Type	Front-mounting Sockets				Back-mounting Sockets						
	Track or screw mounting		Screw mounting only - $-=$	Screwless Socket	Solder terminals		Wrapping terminals				Relays with PCB Terminals
	---	Terminal cover structure			Without		Without Brac	Mounting kets	With Moun	g Brackets	
	Screw terminal size: M3		Screw terminal size: M3.5		Brackets	Brackets	Terminal length: 25 mm	$\begin{array}{c\|} \text { Terminal } \\ \text { length: } 20 \mathrm{~mm} \end{array}$	Terminal length: 25 mm	Terminal length: 20 mm	
$\begin{array}{\|l\|} \hline \text { MY2口 } \\ \text { MY2(S) } \end{array}$	$\begin{aligned} & \hline \text { PYF08A } \\ & \text { (PYC-A1) } \end{aligned}$	PYF08A-E (PYC-A1)	$\begin{aligned} & \text { PYF08M } \\ & \text { (PYC-P) } \end{aligned}$	PYF08S	$\begin{gathered} \text { PY08 } \\ \text { (PYC-P) } \end{gathered}$	PY08-Y1	$\begin{aligned} & \text { PY08QN } \\ & \text { (PYC-P) } \end{aligned}$	PY08QN2 (PYC-P)	PY08QN-Y1	PY08QN2-Y1	$\begin{aligned} & \text { PY08-02 } \\ & \text { (PYC-P) } \end{aligned}$
MY2Z \square-CR	PYF08A (Y92H-3)	PYF08A-E (Y92H-3)			$\begin{gathered} \hline \text { PY08 } \\ \text { (PYC-1) } \end{gathered}$	PY08-Y3	PY08QN (PYC-1)	PY08QN2 (PYC-1)			$\begin{aligned} & \text { PY08-02 } \\ & \text { (PYC-1) } \end{aligned}$
MY3 \square	PYF11A (PYC-A1)				$\begin{gathered} \hline \text { PY11 } \\ \text { (PYC-P) } \end{gathered}$	PY11-Y1	PY11QN (PYC-P)	PY11QN2 (PYC-P)	PY11QN-Y1	PY11QN2-Y1	PY11-02 (PYC-P)
MY4 \square MY4(S) MY4Z MY4Z-CBG MYQ4 MY4H MY4ZH MY2K \square	Screw terminal size: M3			PYF14S	$\begin{gathered} \text { PY14 } \\ \text { (PYC-P) } \end{gathered}$	PY14-Y1	PY14QN (PYC-P)	PY14QN2 (PYC-P)	PY14QN-Y1	PY14QN2-Y1	PY14-02 (PYC-P)
	$\begin{aligned} & \text { PYF14A } \\ & \text { (PYC-A1) } \end{aligned}$	PYF14A-E (PYC-A1)									
	Screwterminal size: M3.5										
	$\begin{aligned} & \text { PYF14T } \\ & \text { (PYC-A1) } \end{aligned}$										

Note: 1. The information in parentheses is the model number of the applicable Mounting Bracket. Mounting Brackets are sold in sets of two. However, the PYC-P is just one Mounting Bracket.
2. The PYF $\square A-E$ has a terminal cover with finger protection. Round terminals cannot be used. Use forked terminals or ferrules instead.
3. Refer to Common Socket and DIN Track Products for the external dimensions of the Socket Relays.
. The Mounting Brackets are applicable for Relays with a height of 36 mm or less. If the Relay height is greater than 53 mm , use $\mathrm{Y} 92 \mathrm{H}-3$ for the Front-mounting Socket and PYC-1 for the Back-mounting Socket. (The Y92H-3 is a set of two Brackets and the PYC-1 is just one Bracket.)
5. Refer to PYF $\square \square S / P 2 R F-\square$-S for details on Screwless Sockets.
6. The terminal cover is integrated into the Socket.

If an MY $\square(S)$ Relay with a Latching Lever is used in combination with a PY $\square \square-02$ Socket for Relays with PCB Terminals and a PYC-P Mounting Brackets, the lever will not operate.
8. We recommends using the PYC-E1 Mounting Bracket for a MY2(S) Relay with Latching Lever. (If the PYC-A1 is used with the MY2(S), the latching lever will be blocked by the Mounting Bracket and the lever will not operate.)
Mounting Heights with Sockets (Unit: mm)
Front-mounting Sockets Back-mounting Screwless Sockets Sockets

Note: 1. The PYF $\square A$ can be mounted on a track or with screws.
2. The heights given in parentheses are the measurements for 53-mm-high Relays.
3. Use the PYC-P Mounting Bracket for the PYF08M.

Socket Mounting Plate ($\mathrm{t}=1.6$) (Unit: mm)
Use a Socket Mounting Plate to mount multiple connection Sockets in a row.

| Item | | Applicable Sockets |
| :--- | :--- | :--- | :--- | :--- | :--- |

PYP-1

PYP-18

PYP-36

Compliance with Electrical Appliances and Material Safety Act

- All standard models comply with the Electrical Appliances and Material Safety Act.
- Always protect any exposed terminals (including Socket terminals) after wiring with insulation tubes or resin coating on PCBs.

Model	Number of poles	Coil ratings	Contact ratings
MY	1 2	6 to 220 VAC 6 to 120 VDC	5 A, 200 VAC
	4^{*}	6 to 110 VAC 6 to 120 VDC	3 A, 115 VAC

* Under the Electrical Appliances and Material Safety Act, do not use any 4pole models with a voltage that exceeds 150 VAC. However, this restriction can be ignored if compliance with the Electrical Appliances and Material Safety Act is not required.

Safety Precautions

Refer to the Common Relay Precautions.

Precautions for Correct Use

Handling

For models with a built-in operation indicator, models with a built-in diode, or high-sensitivity models, check the coil polarity when wiring and wire all connections correctly (DC operation).

Installation

- There is no specifically required installation orientation, but make sure that the Relays are installed so that the contacts are not subjected to vibration or shock in their movement direction.

- Use two M3 screws to attach case-surface-mounted models (MY $\square \mathrm{F}$) and tighten the screws securely (tightening torque: $0.98 \mathrm{~N} \cdot \mathrm{~m}$).

Using MY-series Relays with Microloads with Infrequent Operation

If any standard MY-series Relays (e.g., MY4) are used infrequently to switch microloads, the contacts may become unstable and eventually result in poor contact. In this case, we recommend using the MY4Z-CBG Series, which has high contact reliability for microloads (Refer to page 25.)

About the Built-in Diode and CR Elements

The diode or CR element that are built into the Relay are designed to absorb the reverse voltage from the Relay coil. If a large surge in voltage is applied to the diode or CR element from an external source, the element will be destroyed If there is the possibility of large voltage surges that could be applied to the elements from an external source, take any necessary surge absorption measures.

Latching Levers

- Turn OFF the power supply when operating the latching lever. After you use the latching lever always return it to its original state
- Do not use the latching lever as a switch.
- The latching lever can be used for 100 operations min.

Relay Replacement

To replace the Relay, turn OFF the power supply to the load and Relay coil sides to prevent unintended operation and possible electrical shock.

Attaching and Removing Relay Hold-down Clips
When you attach a Hold-down Clip to or remove it from a Socket, wear gloves or take other measures to prevent injuring your fingers on the Hold-down Clip.

Terms and Conditions Agreement

Read and understand this catalog.
Please read and understand this catalog before purchasing the products. Please consult your OMRON representative if you have any questions or comments.

Warranties.
(a) Exclusive Warranty. Omron's exclusive warranty is that the Products will be free from defects in materials and workmanship for a period of twelve months from the date of sale by Omron (or such other period expressed in writing by Omron). Omron disclaims all other warranties, express or implied.
(b) Limitations. OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, ABOUT NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OF THE PRODUCTS. BUYER ACKNOWLEDGES THAT IT ALONE HAS DETERMINED THAT THE
PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE.
Omron further disclaims all warranties and responsibility of any type for claims or expenses based on infringement by the Products or otherwise of any intellectual property right. (c) Buyer Remedy. Omron's sole obligation hereunder shall be, at Omron's election, to (i) replace (in the form originally shipped with Buyer responsible for labor charges for removal or replacement thereof) the non-complying Product, (ii) repair the non-complying Product, or (iii) repay or credit Buyer an amount equal to the purchase price of the non-complying Product; provided that in no event shall Omron be responsible for warranty, repair, indemnity or any other claims or expenses regarding the Products unless Omron's analysis confirms that the Products were properly handled, stored, installed and maintained and not subject to contamination, abuse, misuse or inappropriate modification. Return of any Products by Buyer must be approved in writing by Omron before shipment. Omron Companies shall not be liable for the suitability or unsuitability or the results from the use of Products in combination with any electrical or electronic components, circuits, system assemblies or any other materials or substances or environments. Any advice, recommendations or information given orally or in writing, are not to be construed as an amendment or addition to the above warranty.
See http://www.omron.com/global/ or contact your Omron representative for published information.
Limitation on Liability; Etc.
OMRON COMPANIES SHALL NOT BE LIABLE FOR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS OR PRODUCTION OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED IN CONTRACT, WARRANTY, NEGLIGENCE OR STRICT LIABILITY.
Further, in no event shall liability of Omron Companies exceed the individual price of the Product on which liability is asserted.

Suitability of Use.

Omron Companies shall not be responsible for conformity with any standards, codes or regulations which apply to the combination of the Product in the Buyer's application or use of the Product. At Buyer's request, Omron will provide applicable third party certification documents identifying ratings and limitations of use which apply to the Product. This information by itself is not sufficient for a complete determination of the suitability of the Product in combination with the end product, machine, system, or other application or use. Buyer shall be solely responsible for determining appropriateness of the particular Product with respect to Buyer's application, product or system. Buyer shall take application responsibility in all cases.
NEVER USE THE PRODUCT FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY OR IN LARGE QUANTITIES WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCT(S) IS PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

Programmable Products

Omron Companies shall not be responsible for the user's programming of a programmable Product, or any consequence thereof.

Performance Data.

Data presented in Omron Company websites, catalogs and other materials is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of Omron's test conditions, and the user must correlate it to actual application requirements. Actual performance is subject to the Omron's Warranty and Limitations of Liability.

Change in Specifications.

Product specifications and accessories may be changed at any time based on improvements and other reasons. It is our practice to change part numbers when published ratings or features are changed, or when significant construction changes are made. However, some specifications of the Product may be changed without any notice. When in doubt, special part numbers may be assigned to fix or establish key specifications for your application. Please consult with your Omron's representative at any time to confirm actual specifications of purchased Product.

Errors and Omissions.
Information presented by Omron Companies has been checked and is believed to be accurate; however, no responsibility is assumed for clerical, typographical or proofreading errors or omissions.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for General Purpose Relays category:
Click to view products by Omron manufacturer:
Other Similar products are found below :
PCN-105D3MH,000 59641F200 5JO-1000CD-SIL LY1SAC110120 5X827E 5X837F 5X840F 5X842F 5X848E LY2N-AC120 LY2SAC220/240 LY2-US-AC120 LY3-US-AC120 LY4F-UA-DC12 LY4F-UA-DC24 LY4F-US-AC120 LY4F-US-AC240 LY4F-US-DC24 LY4F-VD-AC110 LYQ20DC12 M115C60 M115N010 M115N0150 6031007G 603-12D 61211T0B4 61212T400 61222Q400 61243B600 $\underline{61243 \mathrm{C} 500}$ 61243Q400 61311BOA2 61311BOA6 61311BOA8 61311C0A2 61311COA1 61311COA6 61311F0A2 61311QOA1 61311QOA4 61311T0D6 61311TOA6 61311TOA7 61311TOB3 61311TOB4 61311U0A6 61312Q600 61312T400 61312T600 61313U200

[^0]: Refer to Connection Socket and Mounting Bracket Selection Table on page 33 in Options for information on the possible combinations of Models with Plug-in Terminals and Sockets.

