

Long-distance Communications Mode Eliminates Wiring Restrictions for More Efficient System Desig

System Design

With conventional High-speed Communications Mode, the following restrictions on the number of branching points and cable length had to be considered when designing the system.
With a Special Flat Cable or a 4-conductor VCTF cable:
Main line length $A: 30 \mathrm{~m}$ max. Branch line lengths B, C, and $D: 3 \mathrm{~m}$ max. Total branch line length $B+C+D: 30 \mathrm{~m}$ max.

Baud rate: 750 kbps (in High-speed Communications Mode)

* With 2-conductor VCTF cable (in High-speed Communications Mode), main line length: 100 m max

Using CompoBus/S Long-distance Communications Mode (with a Special Flat Cable or a 4 conductor VCTF cable) removes restrictions on main and branch line lengths. Branch freely up to a total cable length of 200 m

Greatly Saves Wiring and Installation Effort and Time for System Maintenance and Expansion

Programmable Slaves

A slave with the complex functional

Programmable Slaves combine devices, such as sensors and actuators, into one functional unit that is treated as a DeviceNet slave.
Programmable Slaves greatly facilitate device distribution and functional organization. They help standardize programming between units and reduce the amount of programming required at the master. I/O and operational checks can be performed for each functional unit, rather than waiting for final system assembly, as with conventional distributed I/O systems.

DeviceNet ${ }_{w}$

Multiword I/O links and explicit messages are used to control slaves from the master. Log data for communications can be sent in one opessages. 1,024 - poin Explicit
Messages

Devicenet- Compo Cusis Comoosus/s Caleway

ity needed for distributed blocks.

- Functions

OMRON Programmable Slaves function as DeviceNet slaves, yet they provide PLC functionality to enable easy system expansion and create new potential.

High-speed
Counter
Pulse Output
Interrupt
Inputs
Clackark
Clock
RS-232C
Connected to bar code readers, Programmable Terminals, and other devices, the Programmable Slave processes data locally to reduce the load on the master.

Nopropoocol
Communicaions NT Links \quad Host Links

Expansion Units

(3 max.)
Just one Unit is required for each distributed block, reducing the number of interfaces for multipoin communications to, in turn, reduce costs.

CompoBus/S

Less wiring is required for terminal block expansions, connections to remote devices (such as signal lights or pushbutton switches), and connections to pneumatic valves and other non-OMRON products

$(0.8 \mathrm{~ms}, 100 \mathrm{~m}) \quad(\mathrm{mms}, 500 \mathrm{~m}$

CompoBus/S Products

Master Units

CPU Units with CompoBus/S Master CompoBus/S Master Control Units

Without RS-232C port With RS-232C port

CompoBus/S Master Units
Master Unit with 256 points
Master Unit with 128 points

C200HW-SRM21-V1

QM1-SRM21-V1
SYSMAC Board with CompoBus/S Master Functions

200PC-ISA $\square 3$-SRM

Slave Units

	m
\%	\%
4 50,	-
	15

Connections to a Wider Range of Slaves Ensured by Upgraded Models

	Master	Conventional models	New	models
				SRM21-V1 RM21-V1 C01-V2 SA03-SRM SA13-SRM 00C (NEW) 10C (NEW) C-DRT (NEW) C-DRT (NEW)
		NKE-made Uniwire	Communi	ations mode
Slave		CompoBus/S Send Unit SDD-CS1	High-speed communications mode	Long-distance communications mode
	SRT1 Series FND-X \square-SRT	$\begin{aligned} & \hline \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { Yes } \\ \text { Yes } \end{array}$	$\begin{aligned} & \hline \text { No } \\ & \text { No } \end{aligned}$
Existing product	SRT2-AD04 SRT2-DA02	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$
	SRT2-V $\square 08 \mathrm{~S}(-1)$ SRT2-DD08S(-1) SRT2-7D16ML(-1) SRT2-RO $\square 16$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \\ & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { Yes } \\ \text { Yes } \\ \text { Yes } \\ \text { Yes } \end{array}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \\ & \text { Yes } \\ & \text { Yes } \end{aligned}$
	$\begin{aligned} & \text { SRT2-V } \square 08 \mathrm{~S}(-1) \\ & \text { SRT2-■D16(-1) } \\ & \text { SRT2-RO } \square 08 \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { Yes } \\ \text { Yes } \\ \text { Yes } \end{array}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \\ & \text { Ye } \end{aligned}$
	CPM2C-SRT21	Yes	Yes	Yes
	SRT2-पD32ML(-1)	Yes	Yes	Yes
	CPM1A-SRT21	Yes	Yes	Yes
New product	$\begin{aligned} & \hline \text { SRTT-ID04CL(-1) } \\ & \text { SRT2-ODO4L(-1) } \\ & \text { SRTTIDOCLL-(-1) } \\ & \text { SRT2-ODOBCL(-1) } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Yes } \\ & \text { Yes } \\ & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{array}{\|l\|l} \hline \text { Yes } \\ \text { Yes } \\ \text { Yes } \\ \text { Yes } \end{array}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \\ & \text { Yes } \\ & \text { Yes } \end{aligned}$
	SRT2-ID08S SRT2-ND08S SRT2-OD08S	$\begin{aligned} & \hline \text { Yes } \\ & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { Yes } \\ \text { Yes } \\ \text { Yes } \end{array}$	$\begin{aligned} & \hline \text { Yes } \\ & \text { Yes } \\ & \text { Yes } \end{aligned}$
	SRT2-ID16P SRT2-OD16P	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$

Note: 1. In high-speed communications mode, the maximum transmission distance is 100 m at a baud rate of $750 \mathrm{kbps}$. In long-distance communications mode (i.e., a newly available mode), the maximum transmission distance is 500 m at a baud rate of 93.75 kbps ,

Company	Product	Model number	Communications mode	
			High-speed communications mode	Long-distance communications mode
CKD	Solenoid valve for saving wiring effort	4TB1/2/3/4 Series	Yes	Yes (See note.)
		4G Series	Yes	Yes (See note.)
		MN4SO Series	Yes	Yes (See note.)
	Parect regulator	SDA-C	Yes	Yes
SMC	Solenoid valve for SI manifold use	VQ, SY, SX, SQ, SZ Series	Yes	Yes (See note.)
Koganei	F-series solenoid valve	YS2A1, YS2A2	Yes	Yes
	X80M/X88M Series	YS1A1, YS1A2	Yes	Yes
	JA-series solenoid valve	YS5A1, YS5A2	Yes	Yes
	PA, PB-series solenoid valve	YS4A1, YS4A2	Yes	Yes

Rete: Refer to the maker for information on long-distance commication mode

CompoBus/S Connection Examples

High-speed ON/OFF Bus Communications in Remote I/O Systems

Special Flat Cable Connection
Master

Note: Cabtire cable and flat cable cannot be used together.

omron

Ultra-compact, Thin-profile CPM2C CPU Unit with CompoBus/S Master Offering High-speed Bus Communications with No Complicated Wiring

Ultra-compact, thin-profile design ideal for on-site applications
Ultra-compact at $40 \times 90 \times 65 \mathrm{~mm}(\mathrm{~W} \times \mathrm{H} \times \mathrm{D})$ with 10 I/O points and CompoBus/S Master offers versatile expandability to construct systems meeting on-site needs.

- A large number of expansion I/O points reduces system construction cost.
Up to three Expansion Terminals can be
connected. Furthermore connected. Furthermore, CompoBus/S Remot
Terminals can be used for expansion I/O points. Not only in-panel wiring but also external wiring is simplified. Furthermore, the miniaturization of the control panel reduces cable, terminal block, and
wiring costs.
- Easy System Designing, Modification, and Expansion
CompoBus/S Remote Terminals with high-speed bus communications and no complicated wiring can be used as expansion terminal blocks with expansion is reserved at the designing stage.
A calendar/clock ensures easy machinery control,
including data collection and error logs with date and time stamps. This functionality can be used as a weekly timer as well.

Control Panel

Ordering Information

Unit		Inputs	Outputs	Clock	Model
10 points (6 inputs/4 outputs)	Connector model	6 points at 24 VDC	4 transistor sinking outputs	Yes	CPM2C-S100C
			4 transistor sourcing outputs	Yes	CPM2C-S110C

Specifications

■ General Specifications

Item		Specification
Control method		Stored program method
I/O control method		Cyclic scan method (Immediate refreshing can be performed with IORF(97).)
Programming language		Ladder diagram
Instruction length		1 step per instruction 1 to 5 words per instruction
Instructions	Basic instructions	14
	Special instructions	105 instructions, 185 variations
Execution time	Basic instructions	$0.64 \mu \mathrm{~s}$ (LD instruction)
	Special instructions	$7.8 \mu \mathrm{~s}$ (MOV instruction)
Program capacity		4,096 words
Max. I/O capacity		CPU Unit only: 10 points Expansion I/O Unit: 96 points (32-point Expansion I/O Unit x 3) (Up to 3 Expansion Units can be connected.) CompoBus/S: 256 points (362 points in total)
Input bits		IR 00000 to IR 00915 (Bits not used for input bits can be used for work bits.)
Output bits		IR 01000 to IR 01915 (Bits not used for output bits can be used for work bits.)
CompoBus/S input bits		128 bits: IR 02000 to IR 02715 (words IR 020 to IR 027)
CompoBus/S output bits		128 bits: IR 03000 to IR 03715 (words IR 030 to IR 037)
Work bits		
Special bits (SR area)		440 bits: SR 22800 to SR 25507 (words SR 228 to SR 255)
Temporary bits (TR area)		8 bits: ($\operatorname{TR} 0$ to TR 7)
Holding bits (HR area)		320 bits: HR 0000 to HR 1915 (words HR 00 to HR 19)
Auxiliary bits (AR area)		384 bits: AR 0000 to AR 2315 (words AR 00 to AR 23) These include CompoBus/S slave status flags (words AR 04 to AR 07).
Link bits (LR area)		256 points: LR 0000 to LR 1515 (words LR 00 to LR 15)
Timers/Counters		256 timers/counters: TIM/CNT 000 to TIM/CNT 255 1-ms timers: TMHH (--) 10-ms timers: TIMH (15) 100-ms timers TIM 1-s/10-s timers: TIML (--) Decrementing counters: CNT Reversible counters: CNTR (12)
Data memory	Read/Write	2,048 words (DM 0000 to DM 2047) The Error Log is contained in DM 2000 to DM 2021.
	Read only	456 words (DM 6144 to DM 6599)
	PC Setup	56 words (DM 6600 to DM 6655)
Basic interrupt functions	Interrupt inputs	2 interrupts (Used for both counter mode interrupts inputs and quick-response inputs.
	Scheduled interrupts	1 interrupt

Item		Specification
High-speed counter functions	High-speed counters	1 counter (single phase at 20 kHz or 2 phases at 5 kHz)
	$\begin{aligned} & \hline \text { Counter } \\ & \text { interrupts } \\ & \hline \end{aligned}$	1 interrupt (set value comparison or set-value range comparison)
	Interrupt inputs (counter mode)	2 interrupts (Used for both external interrupts inputs and quick-response inputs.)
	Count-up interrupts	2 interrupts (Used for both external interrupts inputs and quick-response inputs.)
Quick-response inputs		2 points (Used for both external interrupts inputs and counter mode interrupt inputs.) Min. input pulse width: $50 \mu \mathrm{~s}$ max.
Pulse output		2 points with no acceleration/deceleration, 10 Hz to 10 kHz each, and no direction control: 1 point with trapezoid acceleration/deceleration, 10 Hz to 10 kHz with direction control: or 2 points with variable duty-ratio outputs
Synchronized pulse control		1 point
Input time constant (ON response time = OFF response time)		Can be set for CPU Unit inputs and Expansion Unit inputs only ($1,2,3,5,10,20,40$, or 80 ms)
Clock		Equipped with clock (built-in RTC)
Communications functions		Peripheral port: Supports Host Link, peripheral bus, no-protocol communications, and Programming Console connections. RS-232C port: Supports Host Link, no-protocol communications, 1-to-1 Link, or 1-to-1 NT Link connections.
Power failure backup function		Data in HR, AR, Counter (CNT), and Data Memory (DM) areas is held.
Memory backup		Non-volatile (flash) memory: Program, read-only DM area, and PC Setup
		Memory backup (lithium battery: 2 years lifetime): DM area, HR area, AR area, and counter values
Self-diagnostic functions		CPU error (watchdog timer), memory errors, communications errors, setting errors, battery errors, and expansion I/O bus errors
Program check		No END instruction, programming errors (checked when operation is started)
Programming devices	Programming Console	C200H-PRO27, CQM1-PRO01, or CQM1H-PRO01
	SSS	IBM PC/AT or compatible (SYSMAC Support Software version 1.1 or higher)
	CPT	Windows
	CX-P	Windows

Note: Connecting Cable (CPM2C-CN111, CS1W-CN114, or CS1W-CN118) is required to connect to the communications peripheral /RS-232C port.

- Communications Specifications

Communications method	Special CompoBus/S protocol
Manchester coding	

Note: 1. A terminator must be connected to the point in the system farthest from the Master.
2. The baud rate is switched using DM settings (default setting is 750 kbps).

Dimensions

Note: All units are in millimeters unless otherwise indicated. CPM2C-S100C CPM2C-S110C

Note: Refer to CPM2C-S Programmable Controller Operation Manual (W377) for detailed specifications.

omron

Programmable Slaves

Multi-functional Slave for Distributed

Blocks

An entire installation consisting of sensors and actua tors is handled as a DeviceNet slave.
duction of standard units while standardizing pro duction of standard units while standardizing pro ventional distributed I/O control networks do not allow I/O checks or operation checks until all devices on the networks are assembled and connected. Program mable Slaves, however, allow I/O and operation checks on any distributed unit independently.

- DeviceNet Slave Functions

Supports multi-word $1 / O$ Links and message communications, making it possible for the maste to control the data of all the slaves on the network. Data that does not need immediate transmission, message communications.

- CompoBus/S Master Functions Connects to remote signal lights, pushbutton
switches, terminal blocks, and pneumatic valves from other companies over VCTF or easy-tobranch flat cable.

- RS-232C Communications Connects to the BCRs and PTs to process data alleviating the load on the master
- Expansion Unit (Up to Three Units) A single node is used to control distributed blocks and decrease the size of the communications block in multi-point operation, thus making the cost reduction of the system possible.

Ordering Information

Unit		Inputs	Outputs	Clock	Model
10 points (6 inputs/4 outputs)	Connector model	6 points at 24 VDC	4 transistor sinking outputs	Yes	CPM2C-S100C-DRT
			4 transistor sourcing outputs	Yes	CPM2C-S110C-DRT

Specifications

- General Specifications

Item		Specification
Control method		Stored program method
I/O control method		Cyclic scan method (Immediate refreshing can be performed with IORF(97).)
Programming language		Ladder diagram
Instruction length		1 step per instruction 1 to 5 words per instruction
Instructions	Basic instructions	14
	Special instructions	105 instructions, 185 variations
Execution time	Basic instructions	$0.64 \mu \mathrm{~s}$ (LD instruction)
	Special instructions	$7.8 \mu \mathrm{~s}$ (MOV instruction)
Program capacity		4,096 words
Max. I/O capacity		CPU Unit only: 10 points Expansion I/O Unit: 96 points (32-point Expansion I/O Unit x 3) (Up to 3 Expansion Units can be connected.) CompoBus/S: 256 points (362 points in total)
Input bits		IR 00000 to IR 00915 (Bits not used for input bits can be used for work bits.)
Output bits		IR 01000 to IR 01915 (Bits not used for output bits can be used for work bits.)
CompoBus/S input bits		128 bits: IR 02000 to IR 02715 (words IR 020 to IR 027)
CompoBus/S output bits		128 bits: IR 03000 to IR 03715 (words IR 030 to IR 037)
Work bits		672 bits: IR 02800 to IR 02915 (words IR 028 to IR 029) IR 03800 to IR 03915 (words IR 038 to IR 039) IR 04000 to IR 04915 (words IR 040 to IR 049) IR 20000 to IR 22715 (words IR 200 to IR 227)
Special bits (SR area)		440 bits: SR 22800 to SR 25507 (words SR 228 to SR 255)
Temporary bits (TR area)		8 bits: (TR 0 to TR 7)
Holding bits (HR area)		320 bits: HR 0000 to HR 1915 (words HR 00 to HR 19)
Auxiliary bits (AR area)		384 bits: AR 0000 to AR 2315 (words AR 00 to AR 23) These include CompoBus/S slave status flags (words AR 04 to AR 07).
Link bits (LR area)		256 points: LR 0000 to LR 1515 (words LR 00 to LR 15)
Timers/Counters		256 timers/counters: TIM/CNT 000 to TIM/CNT 255 1-ms timers: TMHH (--) 10-ms timers: TIMH (15) 100-ms timers TIM 1-s/10-s timers: TIML (--) Decrementing counters: CNT Reversible counters: CNTR (12)
Data memory	Read/Write	2,048 words (DM 0000 to DM 2047) The Error Log is contained in DM 2000 to DM 2021.
	Read only	456 words (DM 6144 to DM 6599)
	PC Setup	56 words (DM 6600 to DM 6655)
DeviceNet slave functions		DeviceNet Remote I/O Link No. of I/O Link points: 1,024 max. Explicit message communications Any PC data area can be accessed from the master
Basic interrupt functions	Interrupt inputs	2 interrupts (Used for both counter mode interrupts inputs and quick-response inputs.
	Scheduled interrupts	1 interrupt

Item		Specification
$\begin{array}{\|l\|} \hline \begin{array}{l} \text { High-speed } \\ \text { counter } \\ \text { functions } \end{array} \\ \hline \end{array}$	High-speed counters	1 counter (single phase at 20 kHz or 2 phases at 5 kHz)
	Count er interrupts	1 interrupt (set value comparison or set-value range comparison)
	Interrupt inputs (counter mode)	2 interrupts (Used for both external interrupts inputs and quick-response inputs.)
	Count-up interrupts	2 interrupts (Used for both external interrupts inputs and quick-response inputs.)
Quick-response inputs		2 points (Used for both external interrupts inputs and counter mode interrupt inputs.) Min. input pulse width: $50 \mu \mathrm{~s}$ max.
Pulse output		2 points with no acceleration/deceleration, 10 Hz to 10 kHz each, and no direction control: 1 point with trapezoid acceleration/deceleration, 10 Hz and 10 kHz with no direction control: or 2 points with variable duty-ratio outputs
Synchronized pulse control		1 point
Input time constant (ON response time $=$ OFF response time)		Can be set for CPU Unit inputs and Expansion Unit inputs only (1, 2, 3, 5, 10, 20, 40, or 80 ms)
Clock		Equipped with clock (built-in RTC)
Communications functions		Peripheral port: Supports Host Link, peripheral bus, no-protocol communications, and Programming Console connections. RS-232C port: Supports Host Link, no-protocol communications, 1-to-1 Link, or 1-to-1 NT Link connections.
Power failure backup function		Data in HR, AR, Counter (CNT), and Data Memory (DM) areas is held.
Memory backup		Non-volatile (flash) memory: Program, read-only DM area, and PC Setup
		Memory backup (lithium battery: 2 years lifetime): DM area, HR area, AR area, and counter values
Self-diagnostic functions		CPU error (watchdog timer), memory errors, communications errors, setting errors, battery errors, and expansion I/O bus errors
Program check		No END instruction, programming errors (checked when operation is started)
Programming devices	Programming Console	C200H-PRO27, CQM1-PRO01, or CQM1H-PRO01
	SSS	IBM PC/AT or compatible (SYSMAC Support Software version 1.1 or higher)
	CPT	Windows
	CX-P	Windows

Note: Connecting Cable (CPM2C-CN111, CS1W-CN114, or CS1W-CN118) is required to connect to the communications peripheral /RS-232C port.

Communications Specifications

DeviceNe

Communications protocol		DeviceNet
Connection form		Combination of multi-drop and T-branch connections (see note 1)
Baud rate		500,250 , or 125 kbps (switchable)
Communications media		Special 5 -conductor cable (2 signal lines, 2 power supply lines, and 1 shield line)
Communications distance	Baud rate	
Max. number of connecting nodes		64 (63 slaves and 1 master)
Error control checks		CRC error, node address duplication check, and scan list verification

Note: 1. A terminator must be connected to the point in the system farthest from the Master.
2. The maximum network length is the distance from the master to the farthest node
3. When Thin Cable is used for the main line, the main line must be 100 m or less in length.

Communications method		Special CompoBus/S protocol
Coding method		Manchester coding
Connection form		Combination of multi-drop method and T-branch connections (see note 1)
Baud rate		High-speed Communications Mode: 750 kbps Long-distance Communications Mode: 93.75 kbps (see note 2)
Communications cycle time	High-speed Communications Mode	0.5 ms (with 8 input and 8 output slaves connected)
		0.8 ms (with 16 input and 16 output slaves connected)
	Long-distance Communications Mode	4.0 ms (with 8 input and 8 output slaves connected)
		6.0 ms (with 16 input and 16 output slaves connected)
Communications media		2-conductor cable (VCTF 0.75×2), 4 -conductor cable (VCTF 0.75×4), or Special Flat Cable
Communications distance	High-speed Communications Mode	2-conductor VCTF cable: Main line length: $\quad 100 \mathrm{~m}$ max. Branch line length: 3 m max. Total branch line length: 50 m max. Special Flat Cable, 4-conductor VCTF cable: Main line length: $\quad 30 \mathrm{~m}$ max. Branch line length: $\quad 3 \mathrm{~m}$ max. Total branch line length: 30 m max. When Special Flat Cable is used to connect fewer than 16 Slaves, the main line can be up to 100 m long and the total branch line length can be up to 50 m .)
	Long-distance Communications Mode	2-conductor VCTF cable: Main line length: $\quad 500 \mathrm{~m}$ max. Branch line length: $\quad 6 \mathrm{~m}$ max. Total branch line length: 120 m max. Special Flat Cable, 4-conductor VCTF cable: Variable branch wiring (total cable length 200 m max.) (There are no limits on the branching format or main, branch, or total line lengths. The terminator must be connected to the point in the system farthest from the master.)
Maximum number of nodes		32
Error control checks		Manchester code check, frame length check, and parity check

Note: 1. A terminator must be connected to the point in the system farthest from the Master.
2. The baud rate is switched using DM settings (default setting is 750 kbps).

Dimensions

Note: All units are in millimeters unless otherwise indicated CPM2C-S100C-DRT
CPM2C-S110C-DRT

Note: Refer to CPM2C-S Programmable Controller Operation Manual (W377) for detailed specifications.

omron

Master Control Units (S-Controllers)
 SRM1-C01-V2/C02-V2

Subminiature, Stand-alone Model with

CompoBus/S Master and SYSMAC

Controller Functions

- Maximum number of Remote I/O points per Master 256
Maximum number of Slaves per Master: 32
Communications cycle time: 0.5 ms max. (at baud rate 750 kbps).
- Communications distance: Extended to 500 m Communications distance: Exte
- Additional instructions (PID, SCL, NEG, ZCP) Additional instructions (PID,
ensure analog compatibility.
■ RS-232C port incorporated (SRM1-C02-V2).
Ordering Information

Specifications		Model
Built-in stand-alone controller functions	Without RS-232C	SRM1-C01-V2
	With RS-232C	SRM1-C02-V2

Specifications

Number of I/O points	256 points (128 inputs/128 outputs) 128 points (64 inputs/64 outputs) Selectable by DM setting. The default setting is 256 points.
Max. number of Slaves per Master	$\begin{array}{\|l} \hline 256 \text { points: } 32 \\ 128 \text { points: } 16 \\ \hline \end{array}$
I/O words	Input words: 000 to 007 Output words: 010 to 017
Programming language	Ladder diagram
Types of instruction	14 basic and 81 special instructions (125 instructions in total)
Execution time	LD instruction: $0.97 \mu \mathrm{~s}$ MOV instruction: $9.1 \mu \mathrm{~s}$
Program capacity	4,096 words
Data memory	2,022 + 512 (read-only) words
Timers/Counters	128 timers/counters
Work bits	640 bits
Memory backup	Flash memory (without battery): User programs Lithium battery: Data memory etc. (Battery life: 10 years min. at an ambient temperature of $25^{\circ} \mathrm{C}$.)
Peripheral port	1 point
RS-232C port	1 point (SRM1-C02 only) Host Link, NT Link, 1:1 Link, or no protocol
Programming tool	Programming Consoles: CQM1-PRO01-E, C200H-PRO27-E CX-Programmer (Supported for versions 2 or later.) WS02-CXP1-E SYSMAC Support Software (MS-DOS version): C500-ZL3AT1-E

- Communications Specifications

Communications method		CompoBus/S protocol
Coding method		Manchester coding method
Connection method		Multi-drop method and T-branch method (see note 1)
Communications baud rate		$750,000 \mathrm{bps} / 93,750 \mathrm{bps}$ (see note 2)
Communications cycle time	High-speed communications mode	0.5 ms with 8 Slaves for inputs and 8 Slaves for outputs
		0.8 ms with 16 Slaves for inputs and 16 Slaves for outputs
	Long-distance communications mode	4.0 ms with 8 Slaves for inputs and 8 Slaves for outputs
		6.0 ms with 16 Slaves for inputs and 16 Slaves for outputs
Communications cable		2-conductor VCTF cable (0.75×2), 4 -conductor VCTF cable (0.75×4) Dedicated flat cable
Communications distance	High-speed communications mode	
	Long-distance communications mode	2-conductor VCTF cable: Main line length: $\quad 500 \mathrm{~m}$ max. Branch line length: 6 m max. Total branch line length: 120 mmax . Flat cable, 4-conductor VCTF cable: Variable branch wiring (total cable length 200 m max.) (There are no limits on the branching format or main, branch, or total line lengths. The terminator must be connected to the point in the system farthest from the master.)
Max. number of connecting nodes		32
Error control chec		Manchester code check, frame length check, and parity check

Error control checks	Manchester code check, frame length check, and parity check

Note: 1. A terminator must be connected to the point in the system farthest from the Master.
2. The communications baud rate is switched using DM settings (default setting is $750,000 \mathrm{bps}$)

- General Specifications

Supply voltage	24 VDC
Allowable supply voltage	20.4 to 26.4 VDC
Power consumption	3.5 W max.
Inrush current	12.0 A max.
Noise immunity	Conforms to IEC61000-4-4, 2 kV (power lines)
Vibration resistance	10 to $57 \mathrm{~Hz}, 0.075-\mathrm{mm}$ amplitude, 57 to 150 Hz , acceleration: $9.8 \mathrm{~m} / \mathrm{s}^{2}$ in X, Y, and Z directions for 80 minutes each (Time coefficient; 8 minutes \times coefficient factor $10=$ total time 80 minutes)
Shock resistance	$147 \mathrm{~m} / \mathrm{s}^{2}$ three times each in X, Y, and Z directions
Ambient temperature	Operating: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ Storage: $-20^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$
Humidity	10\% to 90% (with no condensation)
Atmosphere	Must be free from corrosive gas.
Terminal screw size	M3
Power interrupt time	DC type: $2 \mathrm{~ms} \mathrm{min}$.
Weight	150 g max.

Nomenclature

Dimensions

Note: All units are in millimeters unless otherwise indicated.
SRM1-C01/C02-V2

The above dimensions apply to the SRM1-C02-V2. The SRM1-C01-V2 has no RS-232C port.

Precautions

For details on safety precautions, refer to the CompoBus/S Master Control Units Operation Manual (W318).

omROn

Master Unit

Master Unit for CS1, C200HX, C200HG,

C200HE, and C200HS

- A maximum of 256 I/O points available.
- Connects to a maximum of 32 Slaves.
- Communications cycle time: 0.5 ms max. (at baud rate 750 kbps)
- Communications distance: Extended to 500 m max. (at baud rate 93.75 kbps).
- Connection to Analog Terminals now supported

Ordering Information

PC	Max. number of I/O points	Model
C200HX (-Z), C200HG (-Z), C200HE (-Z), C200HS, CS1	256 points (128 inputs/128 outputs)	C200HW-SRM21-V1

Specifications

- Communications Specifications

Communications method	CompoBus/S protocol
Coding method	Manchester coding method
Connection method	Multi-drop method and T-branch method (see note 1)

Note: 1. A terminator must be connected to the point in the system farthest from the Master.
2. The communications baud rate is switched with the DIP switch.

Unit Specifications

Current consumption		150 mA max. at 5 VDC
Number of // points		256 points (128 inputs/128 outputs), 128 points (64 inputs/64 outputs) (swithable)
Number of occupied words		256 points: $\quad 20$ words (8 input words/ 8 output words, 4 status data) 128 points: 10 words (4 input words $/ 4$ output words, 2 status data)
PLC		CS1, C200HX (-ZE), C200HG (-ZE), C200HE (-ZE), C200HS
Number ofMaster Units mountable	C200HE	128 points: 10, 256 points: 5
	C200HG-CPU33/43	128 points: 10, 256 points: 5
	C200HG-CPU53/63	128 points: 16, 256 points: 8
	C200HX-CPU34/44	128 points: 10, 256 points: 5
	C200HX-CPU54/64	128 points: 16, 256 points: 8
	C200HS	128 points: 10, 256 points: 5
	CS1	128 points: 16,256 points: 8
Number of points per node number		8 points
Max. number of Slaves per Master		32
Status data		Communications Error Flag and Active Slave Node (see note)
Weight		200 g max.
Approved standards		UL 508 (E95399), CSA C22.2 No. 142 (LR51460)

UL 508 (E95399), CSA C22.2 No. 142 (LR51460)

Ratings

Nomenclature

Dimensions
Note: All units are in millimeters unless otherwise indicated

Precautions
Refer to the CompoBus/S Operation Manual (W266-E1) before using the Unit.

omROn

Master Unit

Master Unit for CQM1/CQM1

- A maximum of 128 I/O points available (Possible to set 32,64 , or $128 \mathrm{I} / \mathrm{O}$ points).
Connects to a maximum of $16 / 32$ Slaves
Communications cycle time: 0.5 ms max. (at baud rate 750 kbps).
Communications distance: Extended to 500 m max. (at baud rate 93.75 kbps)
- Connection to Analog Terminals now supported.

Ordering Information

PLC	Max. number of //O points	Model
CQM1-series PLC	128 points (64 inputs/64 outputs)	CQM1-SRM21-V1

Specifications

- Communications Specifications

Communications method	CompoBus/S protocol
Coding method	Manchester coding method
Connection method	Multi-drop method and T-branch method (see note 1)

Note: 1. A terminator must be connected to the point in the system farthest from the Master:
2. The communications baud rate is switched with the DIP switch.

- Unit Specifications

Current consumption	180 mA max. at 5 VDC
Number of I/O points	128 points (64 inputs/64 outputs), 64 points (32 inputs/32 outputs), 32 points (16 inputs/16 outputs) (switchable)
Number of occupied words	128 points: 4 input words/4 output words 64 points: 2 input words/2 output words 32 points: 1 input word/1 output word
PC	128 points: CQM1-CPU41-EV1/CPU42-EV1/CPU43-EV1/CPU44-EV1 64 points: CQM1-CPU11-E/CPU21-E/CPU41-EV1/CPU42-EV1/CPU43-EV1/CPU44-EV1 32 points: CQM1-CPU11-E/CPU21-E/CPU41-EV1/CPU42-EV1/CPU43-EV1/CPU44-EV1
Number of points per node number	4/8 points (switchable)
Max. number of Slaves per Master	32 (4 points per node number)
Status data	Alarm terminal output
Weight	200 g max.
Approved standards	UL 508 (E95399), CSA C22.2 No. 142 (LR51460)

- Alarm Output Specifications

- Ratings

The ratings of the Unit are the same as those for the CQM1.
Nomenclature

Dimensions

Note: All units are in millimeters unless otherwise indicated.
CQM1-SRM21-V1

Precautions
Refer to the CompoBus/S Operation Manual (W266-E1) before using the Unit.

omROn

SYSMAC Boards with CompoBus/S Master

Intelligent Computer Board that

 Integrates SYSMAC C200HX/HG/HE andCompoBus/S Master Functions
Equipped with Backup Power Supply
System
Can be mounted to an ISA bus, the standard bus for IBM compatible computers, thus contributing to the downsizing of installations using computers.

- Communications between the SYSMAC Board and the computer are performed via an ISA bus, enabling a communications speed much highe than with RS-232C communications
- Incorporates CompoBus/S communications func tions. Simply connect a CompoBus/S Slave to enable distributed control of I/O in remote locations
A power supply sub-board is also available. This makes it possible to provide power externally, and allows control to be continued even when the computer power supply is interrupted.

Data settings at CompoBus/S Slaves are reflected utomatically.
Enables communications at a maximum distance
of 500 m (at a baud rate of 93.75 kbps).
Conforms to EC Directives.

Ordering Information

PLC	Max. number of I/O points	Model
C200HG-CPU43	256 points (128 inputs/128 outputs)	C200PC-ISA03-SRM
C200HX-CPU64		C200PC-ISA13-SRM

Specifications

- Communications Specifications

Communications method		CompoBus/S protocol
Coding method		Manchester coding method
Connection method		Multi-drop method and T-branch method (see note)
Communications baud rate		$750,000 \mathrm{bps}, 93,750 \mathrm{bps}$
Communications cycle time		0.5 ms with 8 Slaves for inputs and 8 Slaves for outputs 0.8 ms with 16 Slaves for inputs and 16 Slaves for outputs
Communications cable		2-conductor VCTF cable (0.75×2), 4-conductor VCTF cable (0.75×4) Special Flat Cable
Communications distance	High-speed communications mode	2-conductor VCTF cable: Main line length: 100 m max Branch line length: 3 m max. Total branch line length: 50 m max. Special Flat Cable, 4 -conductor VCTF cable: Main line length: 30 m max. Branch line length: $\quad 3 \mathrm{~m}$ max. Total branch line length: 30 m max. (When Special Flat Cable is used to connect fewer than 16 Slaves, the main line can be up to 100 m long and the total branch line length can be up to 50 m .)
	Long-distance communications mode	2-conductor VCTF cable: Main line length: 500 m max. Branch line length: $\quad 6 \mathrm{~m}$ max. Total branch line length: 120 mmax . Special Flat Cable, 4-conductor VCTF cable: Variable branch wiring (total cable length 200 m max.) (There are no limits on the branching format or main, branch, or total line lengths. The terminator must be connected to the point in the system farthest from the master.)
Max. number of connecting nodes		32
Error control checks		Manchester code check, frame length check, and parity check

Error control checks A A terminator must be connected to the point in the system farthest from the Master.
Note: A terminator must be conn
\square Unit Specifications

Power supply voltage	4.875 to 5.25 VDC
Current consumption	0.5 A max. (see note 1)
Number of I/O points	256 points (128 inputs/128 outputs), 128 points (64 inputs/64 outputs), (switchable)
Number of occupied words	256 points: 20 words (8 input words, 8 output words, and 4 status data words) (see note 2) 128 points: 10 words (4 input words, 4 output words, and 2 status data words)
Number of points per node number	8 points
Max. number of Slaves per Master	32
Status data	Communications Error Flag and Active Slave Node (see note 2)
Weight	350 g max.

2. The occupied words are in the IR area.

omron

I/O Link Unit

I/O Link Unit for CPM2C

- Operates as a Slave of the CompoBus/S Master

Unit.

- Exchanges eight inputs and eight outputs with the Master.
- Bears the CE marking.

Ordering Information
CompoBus I/O Link Unit
CompoBus I/O Link Unit

Name	Specifications	Model
CompoBus/S I/O Link Unit	Number of points for $/ /$ O links: 8 inputs and 8 outputs	CPM2C-SRT21

Application Examples

- Conveyor Line

Processing speed can be increased and system setup labor reduced by creating a distributed system with a CPM2C at each conveyor

Specifications

Item	CPM2C-SRT21			
Master/Slave	CompoBus/S Slave			
Number of I/O points	8 inputs and 8 outputs			
Number of words occupied in	1 input word and 1 output word (allocated in the same way as for other Expansion Units)			
CPM2C's I/O memory		\quad DIP switch \quad	Node address setting	1 W
:---	:---			
Power consumption	150 g			
Weight				

Note: For details of CPM2C PLCs, refer to the CPM2C catalog (Cat. No. P049).

Dimensions
CPM2C-SRT21

Installation
■ Number of I/O Units Connectable
Up to 5 Expansion Units can be connected to CPM2C PLCs. There are, however, only 9 input words and 9 output words that can be allocated to Expansion I/O Units: words IR 001 to IR 009 for inputs (the CPU Unit's inputs are allocated to IR 001) and words IR 011 to IR 019 for outputs (the Example

CPU Unit

omron

I/O Link Unit

I/O Link Unit for CPM2A/CPM1A

- Operates as a Slave of the CompoBus/S Master Unit.
- Exchanges eight inputs and eight outputs with the
Master.
- Approved by UL and CSA standards, and bears the CE marking.

Specifications

Master/Slave	CompoBus/S Slave
Number of /O points	8 inputs and 8 outputs
Number of words occupied in CPM2A's	1 input word and 1 output word (allocated in the same way as for other Expansion Units)
IO memory	Node address setting

Note: For details of CPM1A PLCs, refer to the CPM1A catalog (Cat. No. P039). For details of CPM2A PLCs, refer to the CPM2A catalog (Cat. No. P049)

Dimensions

Installation

- Connection Examples

Note: A single CompoBus/S /O Link Unit together with a maximum of two other Expansion //O Units can be connected to the CPM1A or CPM2A CPU Unit

omROn

Transistor Remote I/O Terminals
Long-distance Communications
Supported by SRT2 Models
(Long-distance/High-speed
Communications Selection)
Ultra-compact at $80 \times 48 \times 50(\mathrm{~W} \times \mathrm{H} \times \mathrm{D}) \mathrm{mm}$ for 4 -point and 8 -point terminals and $105 \times 48 \times 50(\mathrm{~W} \times$ $H \times D) \mathrm{mm}$ for 16 -point terminals.

- Two independent power supplies can be used because the I/O terminals are insulated from the internal circuits.
- DIN track mounting and screw mounting are both supported.

Ordering Information

I/O classification	Internal I/O circuit common	1/0 points	Rated voltage	I/O rated voltage	Model
Input	NPN (+ common)	4	24 VDC	24 VDC	SRT2-ID04
	PNP (- common)				SRT2-ID04-1
Output	NPN (- common)				SRT2-OD04
	PNP (+ common)				SRT2-OD04-1
Input	NPN (+ common)	8			SRT2-ID08
	PNP (- common)				SRT2-ID08-1
Output	NPN (- common)				SRT2-OD08
	PNP (+ common)				SRT2-OD08-1
Input	NPN (+ common)	16			SRT2-ID16
	PNP (- common)				SRT2-ID16-1
Output	NPN (- common)				SRT2-OD16
	PNP (+ common)				SRT2-OD16-1

Note: For more details about connections supported by the Master Unit, refer to page 25.
Specifications

- Ratings

Inputs

Input current	6 mA max./point
ON delay time	1.5 ms max.
OFF delay time	1.5 ms max.
ON voltage	15 VDC min. between each input terminal and V
OFF voltage	5 VDC max. between each input terminal and V
OFF current	1 mA max.
Insulation method	Photocoupler
Input indicators	LED (yellow)

Outputs

Rated output current	0.3 A/point
Residual voltage	0.6 V max.
Leakage current	0.1 mA max.
Insulation method	Photocoupler
Output indicators	LED (yellow)

Characteristics

Communications power supply voltage	14 to 26.4 VDC
IO power supply voltage	$24 \mathrm{VDC}+10 \% /-15 \%$
IO power supply current	1 A max.
Current consumption (see note)	50 mA max a 24 VDC
Connection method	Multi-drop method and T-branch method
Connecting Units	4-point and 8-point Terminals: 16 Input Terminals and 16 Output Terminals per Master 16-point Terminals: 8 Input Terminals and 8 Output Terminals per Master
Dielectric strength	500 VAC for 1 min (1-mA sensing current between insulated circuits)
Noise immunity	Conforms to IEC61000-4-4, 2 kV (power lines)
Vibration resistan	10 to $55 \mathrm{~Hz}, 1.5-\mathrm{mm}$ double amplitude
Shock resistance	$\begin{array}{\|ll} \hline \text { Malfunction: } & 200 \mathrm{~m} / \mathrm{s}^{2} \\ \text { Destruction: } & 300 \mathrm{~m} / \mathrm{s}^{2} \\ \hline \end{array}$
Mounting strength	No damage when 50 N pull load was applied for 10 s in all directions
Terminal strength	No damage when 50 N pull load was applied for 10 s
Screw tightening torque	0.6 to $1.18 \mathrm{~N} \cdot \mathrm{~m}$
Ambient temperature	Operating: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ (with no icing or condensation) Storage: ${ }_{-20^{\circ}}$ to $65^{\circ} \mathrm{C}$ (with no icing or condensation)
Ambient humidity	Operating: 35% to 85%
Weight	4-point and 8-point Terminals: $\begin{array}{l}80 \mathrm{~g} \text { max. } \\ 16 \text {-point Terminals: }\end{array}$ 10 g max.
Approved standards (4/8 points)	UL 508, CSA C22. 2 No. 14

Note: The above current consumption is the value with all 4 and 8 and 16 points turned ON excluding the current consumption of the external sensor connected to the input Remote Terminal and the current consumption of the load connected to the output Remote Terminal.

Nomenclature

Node Number Settings

Indicator	Display	Color	Meaning
PWR	Lit	Green	The communications power supply is ON.
	Not lit		The communications power supply is OFF.
сомм	Lit	Yellow	Normal communications
	Not lit		A communications error has occurred or the Unit is in standby status.
ERR	Lit	Red	A communications error has occurred.
	Not lit		Normal communications or the Unitis is in standby status.
0 to 7	Lit	Yellow	The corresponding I/O signal is ON .
	Not lit		The corresponding / / signal is OFF.

Output HOLD/CLEAR Mode

2. This function is available to Output Terminals only.

Node number	Pin 3	Pin 4	Pin 5	Pin 6
	8	4	2	1
0	OFF	OFF	OFF	OFF
1	OFF	OFF	OFF	ON
2	OFF	OFF	ON	OFF
3	OFF	OFF	ON	ON
4	OFF	ON	OFF	OFF
5	OFF	ON	OFF	ON
6	OFF	ON	ON	OFF
7	OFF	ON	ON	ON
8	ON	OFF	OFF	OFF
9	ON	OFF	OFF	ON
10	ON	OFF	ON	OFF
11	ON	OFF	ON	ON
12	ON	ON	OFF	OFF
13	ON	ON	OFF	ON
14	ON	ON	ON	OFF
15	ON	ON	ON	ON

Note: 1. The node number is factory-set to 0 .
2. For node number settings, refer to the CompoBus/S Operation Manual (W266-E1),

Dimensions

Note: All units are in millimeters unless otherwise indicated.
SRT2-ID04 (-1)
SRT2-ODO4 (-1)
SRT2-ID08 (-1) SRT2-ID08 (-1)
SRT2-ODO8 (-1)

SRT2-ID16 (-1)
SRT2-OD16
SRT2-OD16 (-1)

Installation
■ Internal Circuit Configuration

SRT2-ID08

SRT2-OD08
SRT2-ID08-1

SRT2-OD08-1

SRT2-ID16 SRT2-ID16-1

External Connections (NPN Models)

nput

Two-wire Sensors
SRT2-ID04

SRT2-ID08 and SRT2-ID16 with NPN Output

SRT2-ID08 and SRT2-ID16

Output

SRT2-OD08 and SRT2-ID16

- Terminal Arrangement and I/O Device Connection Example (PNP Models)

Note: The connections examples shown are for PNP models.
Input

External Connections (PNP Models)

Input
SRT2-ID04-1 with NPN Output
(2)

Two-wire Sensors
SRT2-IDO4-1

SRT2-ID08-1 and SRT2-ID16-1 with NPN Outpu

SRT2-ID08-1 and SRT2-ID16-1

Output

■ Terminal Arrangement and I/O Device Connection Example (PNP Models)
Note: The connections examples shown are for NPN models.

Precautions
Refer to the CompoBus/S Operation Manual (W266-E1) before using the Unit

omron

Transistor Remote I/O Terminals with 3-tier Terminal Block

Models with 3-tier Terminals (16 Points)

Added to the Remote I/O Terminal

Series.

Six Models are Available Depending on the NPN or PNP Configuration, Inpu Points, I/O Points, or Output Points

Incorporates easy-to-wire terminals each connect ing to a single wire.
Reduces designing and wiring effort
Incorporates a removable circuit block of cassette construction.

Ordering Information

I/O classification	Internal I/O circuit common	I/O points		I/O connection method

Specifications

\square Ratings
Inputs

Input current	6 mA max./point at 24 V and 3 mA min./point at 17 V
ON delay time	1.5 ms max .
OFF delay time	1.5 ms max.
ON voltage	NPN: 15 VDC min. between V terminals and each input terminal PNP: 15 VDC min. between G terminals and each input terminal
OFF voltage	NPN: 5 VDC max. between V terminals and each input terminal PNP: 5 VDC max. between G terminals and each input terminal
OFF current	1 mA max.
Insulation method	Photocoupler
Outputs	
Rated output current	0.5 A max./point
Residual voltage	1.2 V max.
ON delay time	0.5 ms max.
OFF delay time	1.0 ms max .
Leakage current	0.1 mA max.
Insulation method	Photocoupler

Characteristics

Communications power supply voltage	14 to 26.4 VDC
I/O power supply voltage	24 VDC +10\%/-15\%
I/O power supply current	4 A max./common
Current consumption (see note)	50 mA max . at 24 VDC
Connection method	Multi-drop method and T-branch method
Dielectric strength	500 VAC between insulated circuits
Noise immunity	Conforms to IEC61000-4-4, 2 kV (power lines)
Vibration resistance	10 to $150 \mathrm{~Hz}, 1.0-\mathrm{mm}$ double amplitude or $70 \mathrm{~m} / \mathrm{s}^{2}$
Shock resistance	$200 \mathrm{~m} / \mathrm{s}^{2}$
Mounting strength	No damage with 100 N pull load applied in all directions.
Terminal strength	No damage with 100 N pull load applied
Screw tightening torque	0.3 to $0.5 \mathrm{~N} \cdot \mathrm{~m}$
Ambient temperature	Operating: $-10^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ Storage: $-25^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$
Ambient humidity	Operating: 25% to 85% (with no condensation)
Weight	300 g max.

Note: The above current consumption is the value with all points turned ON excluding the current consumption of the external se
nected to the input Remote Terminal and the current consumption of the load connected to the output Remote Terminal.

Nomenclature

Address Setting Switch

Node address	Setting (Hex)
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7

Node address	Setting (Hex)
8	8
9	9
10	A
11	B
12	C
13	D
14	E
15	F

Dimensions

Installation

- Internal Circuit Configuration

SRT2-ID16T-1

- External Connections

Output (NPN Models) SRT2-OD16T
SRT2-MD16T
(88) (89)
$\left.\begin{array}{l}\text { (V) } \\ \text { (G) } \\ \text { (G) }\end{array}\right]$
(G) (6)
$\mathrm{L1} \quad \mathrm{~L}$

Input (PNP Models) SRT2-ID16T-1
SRT2-MD16T-1 SRT2-MD16T
(68)
(8i)
(v) (v)
(G) (G)

Output (PNP Models) SRT2-OD16T-1
SRT2-MD16T-1

omROn

Relay-mounted Remote I/O Terminals SRT2-R
Ultra-miniature 8-point and 16-point

Relay-mounted Terminals

- Ultra-compact
(8-point models: $101 \times 51 \times 51 \mathrm{~mm}(\mathrm{~W} \times \mathrm{H} \times \mathrm{D})$; 16-point models: $156 \times 51 \times 51 \mathrm{~mm}(W \times H \times D))$
- Power MOS FET Relay and Relay models.
- DIN track mounting and screw mounting are available.

Ordering Information

Classification	//0 points	Rated voltage	Relay coil rating	Model	Applicable relay
Relay output	8 points	24 VDC	24 VDC	SRT2-ROC08	G6D-1A
	16 points			SRT2-ROC16	
Power MOS FET relay output	8 points			SRT2-ROF08	G3DZ-2R6PL
	16 points			SRT2-ROF16	

Note: For details about connections to the Master Unit, refer to page 12.
Specifications

- Ratings

Relay Output

Item	SRT2-ROC08, SRT2-ROC16
Applicable relay	G6D-1A (one for each output point)
Rated load	3 A at $250 \mathrm{VAC}, 3 \mathrm{~A}$ at 30 VDC (resistive load)
Rated carry current	3 A (see note 1)
Max. contact voltage	$250 \mathrm{VAC}, 30 \mathrm{VDC}$
Max. contact current	3 A
Max. switching capacity	$730 \mathrm{VA}(\mathrm{AC}), 90 \mathrm{~W}$ (DC)
Min. permissible load (see note 2)	10 mA at 5 VDC
Life expectancy	Electrical: 100,000 operations min. (rated load, at 1,800 operations/h) Mechanical: $20,000,000$ operations min. (at 18,000 operations/h)
Note: 1. The maximum permissible current of COM0 to COM7 is 3 A.	

Note: 1. The maximum permissible current of COMO to COM7 is 3 A .
2. This value fulfills the Preference value of opening/closing at a rate of 120 times per min (ambient operating environment and deter-
mination criteria according to JIS C5442). Power MOS FET Relay Output

Item	SRT2-ROF08, SRT2-ROF16
Applicable relay	G3DZ-2R6PL (one for each output point)
Load voltage	3 to $264 \mathrm{VAC}, 3$ to 125 VDC
Load current	$100 \mu \mathrm{~A}$ to 0.3 A
Inrush current	$6 \mathrm{~A}(10 \mathrm{~ms})$

\square Characteristics

Power supply voltage	$24 \mathrm{VDC}+10 \% /-15 \%$
Current consumption (see note)	350 mA max. at 24 VDC
Connection method	Multi-drop method and T-branch method
Connecting Units	8-point Units: 16 per Master 16-point Units: 8 per Master
Dielectric strength	2,000 VAC for 1 min (1-mA sensing current) between all output terminals and power supply, between communication terminals, and between contacts of different polarities 500 VAC for 1 min ($1-\mathrm{mA}$ sensing current) between all output terminals and power supply, between communication terminals, and between all power supply terminals and communications terminals
Noise immunity	Conforms to IEC61000-4-4, 2 kV (power lines)
Vibration resistance	10 to $55 \mathrm{~Hz}, 0.75-\mathrm{mm}$ double amplitude
Shock resistance	$\begin{array}{\|l} \text { Malfunction: } 100 \mathrm{~m} / \mathrm{s}^{2} \\ \text { Destruction: } 300 \mathrm{~m} / \mathrm{s}^{2} \end{array}$
Mounting strength	No damage when 50 N pull load was applied for 10 s in all directions
Terminal strength	No damage when 50 N pull load was applied for 10 s
Screw tightening torque	0.6 to $1.18 \mathrm{~N} \cdot \mathrm{~m}$
Ambient temperature	Operating: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ (with no icing or condensation) Storage: $-20^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$ (with no icing or condensation)
Ambient humidity	Operating: 35% to 85%
Weight	8-point models: $145 \mathrm{~g} \mathrm{max.}, \mathrm{16-point} \mathrm{models:} 240 \mathrm{~g}$ max.
Approved standards	UL 508, CSA C22. 2 No. 14

Approved standards	UL 508, CSA C22.2 No. 14
Note: The above current consumption is a value with all the points tur	

Note: The above current consumption is a value with all the points turned ON including the current consumption of the G6D coil for th
Remote Output Terminal, and the G3DZ's input current.
Reference Data

G3DZ-2R6PL Switching current (A)
Load Current vs. Ambient Tempera-

These graphs show the characteristics
for when the SRT2-ROC for when the SRT2-
model is mounted.

Inrush Current Resistivity

Nomenclature

Output HOLD/CLEAR Mode

Mode	Pin 1	Setting
HOLD	ON	Output status is maintained when a communications error occurs.
CLEAR	OFF	Output status is cleared when a communications error occurs.
Note:	1. Pin 1 is factory-set to OFF.	

Node Number Settings

Node number	Pin 3	Pin 4	Pin 5	Pin 6
	8	4	2	1
0	OFF	OFF	OFF	OFF
1	OFF	OFF	OFF	ON
2	OFF	OFF	ON	OFF
3	OFF	OFF	ON	ON
4	OFF	ON	OFF	OFF
5	OFF	ON	OFF	ON
6	OFF	ON	ON	OFF
7	OFF	ON	ON	ON
8	ON	OFF	OFF	OFF
9	ON	OFF	OFF	ON
10	ON	OFF	ON	OFF
11	ON	OFF	ON	ON
12	ON	ON	OFF	OFF
13	ON	ON	OFF	ON
14	ON	ON	ON	OFF
15	ON	ON	ON	ON

Note: 1. The node number is factory-set to 0 .
2. For node number setting, refer to the CompoBus/S Operation Manual (W266-E1).

Dimensions

Note: All units are in millimeters unless otherwise indicated.

SRT2-ROC08
SRT2-ROF08

SRT2-ROC16
SRT2-ROF16
SRT2-ROF16

Mounting Holes
Two, 4.2 dia. or M4

Installation

- Internal Circuit Configuration

SRTT-ROCO8
SRT2-ROC16

Note: The G3DZ-2R6PL Power MOS FET Relay is inserted into

- External Connections

■ Terminal Arrangement and I/O Device Connection Example
Output
SRT2-ROC16

Note: 1. Dotted lines indicate internal connections.
SRT2-ROC08 and SRT2-ROF08 have the 0 to 7 and COM0 to COM3 terminals only 2. The above is a connection example of the SRT2-ROC16 with G6D Relays mounted
G3DZ Power MOS FET Relays are mounted to the SRT2-ROF08 and SRT2-ROF16.

Precautions

Refer to the CompoBus/S Operation Manual (W266-E1) before using the Unit

omron

Transistor Remote I/O Terminals with Connectors (32 Points)

Subminiature 32-point Remote Terminal

with Connectors

- Compact dimensions: $35 \times 60 \times 80(\mathrm{~W} \times \mathrm{D} \times \mathrm{H})$

Long-distance and high-speed communications modes available.

- Downsizing enabled with 32 -point MIL connector for I/O connection.

Ordering Information

$\begin{gathered} \hline \mathrm{I} / \mathrm{O} \\ \text { classification } \end{gathered}$	Internal I/O circuit common	1/O points	I/O connection method	Rated voltage for communications power supply	Rated voltage for I/O power supply	Model
Input	NPN (+ common)	32	MIL connector	24 VDC	24 VDC	SRT2-ID32ML
	PNP (- common)					SRT2-ID32ML-1
Output	NPN (- common)					SRT2-OD32ML
	PNP (+ common)					SRT2-OD32ML-1
Input and output	NPN (input: + common; output - common)					SRT2-MD32ML
	PNP (input: - common; output: + common)					SRT2-MD32ML-1
Mounting hook B (see note)						SRT2-ATT02

Note: Mounting hook B is required when not mounting to a DIN track.
Specifications

- Ratings

Inputs

Item	SRT2-ID32ML	SRT2-MD32ML	SRT2-ID32ML-1	SRT2-MD32ML-1
ON voltage	15 VDC min. (Between each input terminal and V .)		15 VDC min. (Between each input terminal and G.)	
OFF voltage	5 VDC max. (Between each input terminal and V .)		5 VDC max. (Between each input terminal and G.)	
OFF current	1.0 mA max.			
Input current	6.0 mA max. at 24 VDC 3.0 mA max. at 17 VDC (Between each input terminal and V .)		6.0 mA max. at 24 VDC 3.0 mA max. at 17 VDC (Between each input terminal and G.)	
Input impedance	$4.4 \mathrm{k} \Omega$			
ON delay time	1.5 ms max.			
OFF delay time	1.5 ms max.			
Number of circuits	$\begin{array}{\|l} 32 \text { points/common, } \\ 1 \text { circuit } \end{array}$	16 points/common, 1 circuit	32 points/common, 1 circuit	16 points/common, 1 circuit

Item	SRT2-OD32ML	SRT2-MD32ML	SRT2-OD32ML-1	SRT2-MD32ML-1
Output current	0.3 A/point 4-A common (See notes 1 and 3.)	0.3 A/point 2-A common (See notes 2 and 3.)	0.3 A/point 4-A common (See notes 1 and 3.)	0.3 A/point 2-A common (See notes 2 and 3.)
Residual voltage	1.2 V max. (Between the 0.3-A DC output terminal and G .)		1.2 V max. (Between the 0.3-A DC output terminal and V .)	
Leakage current	0.1 mA max. (Between the 24-VDC output terminal and G.)		0.1 mA max. (Between the 24-VDC output terminal and V.)	
ON delay time	0.5 ms max.			
OFF delay time	1.5 ms max.			
Insulation method	Photocoupler		Photocoupler	
Number of circuits	32 points/common, 1 circuit	16 points/common, 1 circuit	32 points/common, 1 circuit	16 points/common, 1 circuit

Note: 1. Ensure that the total external load current does not exceed 4 A .
2. Ensure that the
3. Ensure that the current per terminal for the V / G terminals does not exceed 1 A

- Characteristics

Communications power supply voltage	14 to 26.4 VDC
I/O power supply voltage	20.4 to 26.4 VDC
Current consumption for communications power supply (also used for internal circuits; see note)	ID32MLID32ML-1: 50 mA MD32ML/MD32ML-1: 60 mA OD32ML/OD32ML-1:70 mA
Dielectric strength	500 VAC for 1 min (Detection current: 1 mA between insulated circuits.)
Vibration resistance	10 to $150 \mathrm{~Hz}, 0.7-\mathrm{mm}$ double amplitude or $50 \mathrm{~m} / \mathrm{s}^{2}$
Shock resistance	$150 \mathrm{~m} / \mathrm{s}^{2}$
Ambient temperature	$\begin{array}{\|ll} \hline \text { Operating: } & -10^{\circ} \mathrm{C} \text { to } 55^{\circ} \mathrm{C} \text { (with no icing or condensation) } \\ \text { Storage: } & -25^{\circ} \mathrm{C} \text { to } 65^{\circ} \mathrm{C} \end{array}$
Ambient humidity	Operating: 25\% to 85\% (with no condensation)
Weight	ID32ML/ID32ML-1/MD32ML/MD32ML-1: Approx. 100 g max. OD32ML/OD32ML-1: Approx. 90 g

$\begin{array}{ll}\text { Note: } & \text { The above current consumption is the value with all points turned ON excluding the current consumption of the external sen } \\ \text { nected to the input Remote Terminal and the current consumption of the load connected to the output Remote Terminal. }\end{array}$
Applicable Connectors

Type		Model	Remarks
Flat cable, pressure-welded		XG4M-4030-T	---
Stranded wire, pressurewelded	Socket	XG5M-4032-N	For AWG 24
		XG5M-4035-N	For AWG 28 to 26
	Semi-cover	XG5S-2001	---
	Hood cover	XG5S-4022	

Nomenclature

Names of Components

Relationship between
/O Indicators and Connector

Display	Name	Color	Status	Meaning
PWR	Power supply indicator	Green	Lit	Power is being supplied by the communications power supply.
			Not lit	Power is not being supplied by the communications power supply.
COMM1	Communications indicators	Yellow	Lit	I/ O is being exchanged normally.
			Not lit	A communications error has occurred, or the Unit is on standby.
ERR1ERR2	Communications error indicators	Red	Lit	A communications error has occurred.
			Not lit	I/O is being exchanged normally, or the Unit is on standby.
0 to 15	1/0	Yellow	Lit	The corresponding input or output is ON .
			Not lit	The corresponding input or output is OFF, or on standby.

Operation

- Switch Settings

Rotary switch

Node address
setting

DIP switch

Output HOLD/CLEAR Setting (SRT2-OD/MD32ML(-1)) Reserved for system use (SRT2-ID32ML(-1)) Communications mode setting

Node Address

The node address is set to one of the following hexadecimal values

Node address	Setting (hexadecimal)	Node address	Setting (hexadecimal)
0	0	8	8
1	1	9	9
2	2	10	A
3	3	11	B
4	4	12	C
5	5	13	D
6	6	14	E
7	7	15	F

Note: 1. Note the following points when using with the C200HW-
SRM21-V1/SRM1-CO - -V2:
Note the follown 1 poins-V2:
SRM21-V1/SRM1-CO \square -

Communications Mode Setting

The communications mode is set using SW3 of the DIP switch in the way shown below.

SW3	Communications mode	Communications distance	Communications speed	Communications cycle time
OFF	High-speed communications mode	100 mmax.	750 kbps	$0.5 \mathrm{~ms} / 0.8 \mathrm{~ms}$
ON	Long-distance communications mode	500 m max.	93.75 kbps	$4.0 \mathrm{~ms} / 6.0 \mathrm{~ms}$

[^0] data is held or cleared when a communications error occurs.

SW4 (HOLD)	Setting
OFF	Output status is cleared.
ON	Output status is held.

Dimensions

Note: All units are in millimeters unless otherwise indicated.

SRT2-ATT02

$$
\begin{array}{|cc|}
\hline 0 \\
0 \\
-325- & \begin{array}{c}
0 \\
0 \\
0
\end{array} \\
\hline
\end{array}
$$

Installation

- Internal Circuit Configuration

- Terminal Arrangement

Precautions

For details on available communications connectors, refer to page 105.
Communications Connector Pin Arrangement

Applicable Cables

Model	Connected product	Applicable Cable	Remarks
SRT2-ID32ML	$\begin{aligned} & \hline \text { G7TC-ID16 } \\ & \text { G7TC-IA16 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { G79-150-25-D1 }(50 \mathrm{~cm}) \\ \text { G79-175-50-D1 }(75 \mathrm{~cm}) \\ \hline \end{array}$	---
SRT2-MD32ML	Input side: G7TC-ID16 G7TC-IA16 Output side: G7TC-OC16/OC18 G70D-SOC16/VSOC16 G70A-ZOC16-3	$\begin{aligned} & \text { G79-M50-25-D1 }(50 \mathrm{~cm}) \\ & \text { G79-M75-50-D1 }(75 \mathrm{~cm}) \end{aligned}$	Inputs and outputs are distinguished by color. The tube for the input side is red and the tube for the output side is yellow.
SRT2-OD32ML	$\begin{aligned} & \text { G7TC-OC16/OC08 } \\ & \text { G70D-SOC16/VSOC16 } \\ & \text { G70A-ZOC16-3 } \end{aligned}$	$\begin{aligned} & \text { G79-O50-25-D1 }(50 \mathrm{~cm}) \\ & \text { G79-O75-50-D1 }(75 \mathrm{~cm}) \end{aligned}$	---
SRT2-ID32ML-1	G70A-ZIM16-5	$\begin{aligned} & \hline \text { G79-150-25-D2 }(50 \mathrm{~cm}) \\ & \text { G79-175-50-D2 }(75 \mathrm{~cm}) \\ & \hline \end{aligned}$	---
SRT2-MD32ML-1	Input side: G70A-ZIM16-5 Output side: G70A-ZOC16-4 G70D-SOC16-1	G79-M50-25-D2 $(50 \mathrm{~cm})$ G79-M75-50-D2 (75 cm)	Inputs and outputs are distinguished by color. The tube for the input side is red and the tube for the output side is yellow.
SRT2-OD32ML-1	$\begin{aligned} & \text { G70A-ZOC-16-4 } \\ & \text { G70D-SOC 16-1 } \end{aligned}$	$\begin{aligned} & \text { G79-O50-25-D1 }(50 \mathrm{~cm}) \\ & \text { G79-O75-50-D1 }(75 \mathrm{~cm}) \\ & \hline \end{aligned}$	---
	G7TC-OC16-1	$\begin{array}{\|l\|} \hline \text { G79-150-25-D1 }(50 \mathrm{~cm}) \\ \text { G79-175-50-D1 }(75 \mathrm{~cm}) \\ \hline \end{array}$	---

Model	Connected product	Applicable Cable	Remarks
$\begin{array}{\|l\|} \hline \begin{array}{l} \text { All } \\ \text { models } \end{array} \\ \hline \end{array}$	XW2B-40GXW2B-40G5XW2D-40G6	XW2Z-C25K (25 cm)	XW2B-40G4
		XW2Z-C50K (50 cm)	

Cables with Stranded Wires

Model	Connected product	Applicable Cable	Remarks
All models	---	G79-A200C-D1 $(2 \mathrm{~m})$	--

omROn

Compact Remote I/O Terminals that

Save Wiring Effort and Enable

Long-distance or high-speed communications mode is selectable
Incorporates I/O connectors making it possible to minimize the size

- I/O connectors save wiring effort.
- Flexible DIN track mounting is possible through a DIN track attachment.
- Eight-point sensor connector models and 16-point Eight-point sensor connector models and
MIL connector models are the same size

- Features

Vertical or horizontal DIN track mounting according to the available space is possible,
Saves space and easily connects to other devices without wiring effort.

Ordering Information

1/0 classification	Internal I/O circuit common	1/O points	I/O connection method	Model
Digital input	NPN (+ common)	8	Sensor connector	SRT2-VID08S
	PNP (- common)			SRT2-VID08S-1
Digital output	NPN (- common)			SRT2-VOD08S
	PNP (+ common)			SRT2-VOD08S-1
Digital input	NPN (+ common)	16	MIL connector	SRT2-VID16ML
	PNP (- common)			SRT2-VID16ML-1
Digital output	NPN (- common)			SRT2-VOD16ML
	PNP (+ common)			SRT2-VOD16ML-1
Mounting hook A				SRT2-ATT01
Mounting hook B				SRT2-ATT02

[^1]Specifications

- Ratings

Inputs

Item	SRT2-VID08S SRT2-VID08S-1	SRT2-VID16ML SRT2-VID16ML-1
Input current	6 mA max./point at 24 V, 3 mA max./point at 17 V	
ON delay time	1.5 ms max.	
OFF delay time	1.5 ms max.	
ON voltage	15 VDC min. (Between each input terminal and V: NPN. Between each input and G: PNP.)	
OFF voltage	5 VDC max. (Between each input terminal and V: NPN. Between each input and G: PNP.)	
OFF current	1 mA max.	
Insulation method	Photocoupler	
Maximum number of inputs	8	12
Number of circuits	8 points/common, 1 circuit	16 points/common, 1 circuit

Number of circuits
Outputs

Item	SRT2-VID08S SRT2-VID08S-1 Rated output current	0.3 A/point

Number of circuits

Characteristics

$\begin{array}{\|l} \hline \begin{array}{l} \text { Communications power supply } \\ \text { voltage } \end{array} \\ \hline \end{array}$	14 to 26.4 VDC
1/O power supply voltage	20.4 to $26.4 \mathrm{VDC}(24 \mathrm{VDC}+10 \% /$ - 15%)
I/O power supply current	Sensor connector: 2.4 A max., MIL connector: 2.0 A max.
Current consumption (see note)	50 mA max. at 24 VDC
Noise immunity	Conforms to IEC61000-4-4, 2 kV (power lines)
Vibration resistance	10 to $150 \mathrm{~Hz}, 1.0-\mathrm{mm}$ double amplitude or $70 \mathrm{~m} / \mathrm{s}^{2}\left(50 \mathrm{~m} / \mathrm{s}^{2}\right.$ for SRT2-ATT02)
Shock resistance	$200 \mathrm{~m} / \mathrm{s}^{2}$
Dielectric strength	500 VAC (between insulated circuits)
Ambient temperature	$\begin{array}{\|ll} \hline \text { Operating: } & -10^{\circ} \mathrm{C} \text { to } 55^{\circ} \mathrm{C} \text { (with no icing or condensation) } \\ \text { Storage: } & -25^{\circ} \mathrm{C} \text { to } 65^{\circ} \mathrm{C} \end{array}$
Ambient humidity	$\begin{array}{\|ll} \hline \text { Operating: } & 25 \% \text { to } 85 \% \text { (with no condensation) } \\ \text { Storage: } & 25 \% \text { to } 85 \% \end{array}$
Mounting strength	No damage when 100 N pull load was applied in all directions (40 N load for SRT2-ATT02)
Terminal strength	No damage when the following loads were applied: Communications connector: 100 N Sensor connector: 40 N MIL connector: 100 N
Screw tightening torque	Communications connector: $0.25 \mathrm{~N} \cdot \mathrm{~m}$
Node address setting	Settings made at DIP switch (set before supplying power for Slave communications)
Weight	Approx. 75 g max.

Note: The above current consumption is the value with all points turned ON excluding the current consumption of the external s
nected to the input Remote Terminal and the current consumption of the load connected to the output Remote Terminal

Nomenclature

SRT2-VID08S/SRT2-VID08S-1
SRT2-VOD08S/SRT2-VOD08S-1
(Sensor Connector Models) (Sensor Connector Models)

SRT2-VID16ML/SRT2-VID16ML-1 SRT2-VOD16ML/SRT2-VOD16ML-1
(MIL Connector Models)
Communications
Connectors

Output HOLD/CLEAR Mode Setting
Output HOLD/CLEAR Mode

SW8 (HOLD)
OFF

OFF	Output status is sleared.

ON \quad Output status is maintained
Communications Mode Settin
Communications Mode
SW7 (DR)
OFF

| OFF |
| :--- | :--- |
| On |

\qquad
Reserved for System Use (Always OFF)
Node Address Setting

Dimensions

Note: All units are in millimeters unless otherwise indicated.
SRT2-VID08S
SRT2-VID08S-1
SRT2-VODO8S

SRT2-VID16ML
SRT2-VID16ML-1 SRT2-VOD16ML SRT2-VOD16ML-1

SRT2-ATT01

SRT2-ATT02

\square

Installation

- Internal Circuit Configuration

SRT2-VODOBS

SRT2-VOD16ML

SRT2-VID08S-1

SRT2-VOD08S-1

$\underset{\text { V® }}{\text { SRT-VID16ML-1 }}$

SRT2-VOD16ML-1

■ Terminal Arrangement and I/O Device Connection Examples

SRT2-VID08S

SRT2-VID16ML-1
SRT2-VOD16ML

Note: 1. V terminals and G terminals are respectively connected internally.
When supplying power for $/ \mathrm{O}$ from communications connectors, power can be supplied to the sensor output devices from V and G terminals.
2. When using an inductive load (solenoid, valve etc.), either use one with an internal reverse electromotive force absorption diode or attach a diode externally.

Precautions

Refer to the CompoBus/S Operation Manual (W266-E1) before
using the Unit.
Communications Connector Pin Arrangement

The following solderless terminals are recommended.

- Manufacturer: Weidmuller

The following product is a dedicated tool.

- Manufacturer: Weidmuller

Sensor Connector Pin Arrangement

SRT2-VID08S/VID08S-1 SRT2-VOD08S/VOD08S-1

 Note: The XS8A-0441 or XS8A-0442 Connector is not provided with the SRT2-VID or SRT2-VOD. Place an order for the
connector separately.
Applicable Cables

Connectable product	Model		Applicable Cable
1 VO Block		\leftrightarrow	G79.050C (L $=500 \mathrm{~mm}$)
			G79.025C ($\mathrm{L}=250 \mathrm{~mm}$)
Connector-Terminal Conversion Unit	xW2B Series		
Digital Display Unit	M7F		
10 Block	$\begin{aligned} & \hline \text { G7TC-ID16 } \\ & \text { G7TC-1A16 } \\ & \text { G7TC-OC16-1 } \end{aligned}$	\leftrightarrow	G79-150C ($\mathrm{L}=500 \mathrm{~mm}$)
			G79-125C (L = 250 mm)

omron

Waterproof Terminals

Eight Waterproof Terminal Models

Emphasizing Cost Efficiency

- Reduced Labor

Connection using connectors reduces the lead time required for installation. No tools are required for connection to a variety of devices.

- Reduced Wiring

Signal line wiring has been reduced so that the Terminal can
other devices.

- Relay Box not Required

Environment-resistant, dust-tight, drip-proo
construction (IP67) enables direct on-site
mounting.

- Easier Maintenance

Significant reductions not only in setup time but also
maintenance time

- Reduced Space, Improved Operability

Compact design ($160 \times 54 \mathrm{~mm}(\mathrm{~W} \times \mathrm{H})$) (8-point Settings and connections can be performed usin the switch and connectors on the front side of the Terminal
■ System Configuration

Ordering Information

Input/Output	Internal I/O circuit common	1/O points	I/O connections method	Rated voltage for I/O power supply	Model
Inputs	NPN (+ common)	4 points	Sensor I/O connector	24 VDC	SRT2-ID04CL
		8 points			SRT2-ID08CL
	PNP (- common)	4 points			SRT2-ID04CL-1
		8 points			SRT2-ID08CL-1
Outputs	NPN (- common)	4 points			SRT2-OD04CL
		8 points			SRT2-OD08CL
	PNP (+ common)	4 points			SRT2-OD04CL-1
		8 points			SRT2-OD08CL-1

Specifications

■ General Specifications

Item	SRT2-ID04CL SRT2-ID04CL-1 SRT2-OD04CL SRT2-OD04CL-1	SRT2-ID08CL SRT2-ID08CL-1 SRT2-OD08CL SRT2-OD08CL-1
Communications power supply voltage	14 to 26.4 VDC (supplied via communications connectors)	
I/O power supply voltage	20.4 to 26.4 VDC ($^{24} \mathrm{VDC}_{-15 \% /+10 \% \text {) }}$	
Communications current consumption	15 mA max.	20 mA max.
Ambient temperature	Operating: $-10^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ (with no icing) Storage: $-25^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$	
Ambient humidity	Operating: 25% to 85% (with no condensation) Storage: 25% to 85% (with no condensation)	
Connector tightening torque	0.39 to $0.49 \mathrm{~N} \cdot \mathrm{~m}$	
Enclosure rating	IEC IP67	
Mounting method	Mounted using M5 screws	
Weight	Approx. 180 g	Approx. 240 g

■ Communications Media/Distances

Communications medium		4-conductor cable (VCTF, $0.75 \mathrm{~mm}^{2} \times 4$)
$\begin{aligned} & \text { Communications } \\ & \text { distance } \end{aligned}$	High-speed Communications Mode	4-conductor VCTF cable: Main line length: $\quad 30 \mathrm{~m}$ max. Branch line length: $\quad 3 \mathrm{~m}$ max. Total branch line length: 30 m max. (When 4-conductor VCTF cable is used to connect fewer than 16 Slaves, the main line can be up to 100 m long and the total branch line length can be up to 50 m .) cel
	Long-distance Communications Mode	4-conductor VCTF cable: Variable branch wiring (total cable length 200 m max.) (There are no limits on the branching format or main, branch, or total line lengths. The terminator must be connected to the point in the system farthest from the master.)

Item	SRT2-ID04CL SRT2-ID04CL-1	SRT2-ID08CL SRT2-ID08CL-1
Input current	For input voltage of 24 VDC: 6 mA max. per point For input voltage of $17 \mathrm{VDC}: 3 \mathrm{~mA}$ min. per point	
Input impedance	$4.4 \mathrm{k} \Omega$	
ON delay time	1.5 ms max.	
OFF delay time	1.5 ms max.	
ON voltage	15 VDC min.	
OFF voltage	5 VDC max.	
OFF current	1 mA max.	
Number of circuits	4 points with 1 common	8 points with 1 common

■ Output Specifications

Item	SRT2-OD04CL SRT2-OD04CL-1	SRT2-OD08CL SRT2-OD08CL-1
Rated output current	0.5 A per point (2 A per common)	0.5 A per point (2.4 A per common)
Residual voltage	1.2 V max.	
Leakage current	0.1 mA max.	
ON delay time	0.5 ms max.	
OFF delay time	1.5 ms max.	
Number of circuits	4 points with 1 common	8 points with 1 common

- Applicable Connectors

Power Supply Connectors

Model	Specification
XS2C-D4 $\square \square$	Assembling-type connector (crimp, soldering, or screw) socket
XS2W-D42 $\square-\square \square \square-\square$	Cable with connector on each end
XS2F-D42 $\square-\square 80-\square$	Cable with connector at one end (socket end)
XS2R-D427-5	T-branch connector

I/O Connectors

Model	Specification
XS2G-D4 $\square \square$	Assembling type connector (crimp, soldering, or screw) Socket
XS2H-D421- $\square \square \square-\square$	Cable with connector at one end (plug end)
XS2W-D42 $\square-\square \square \square-\square$	Cable with connector on each end
XS2Z-12	Waterproof cover
XS2Z-15	Dust cover

Communications Connector

Model	Specification
XS2R-D427-5	T-branch connector
SRS2-1	Connector with terminating resistor (plug)
XS2G-D4S7	Assembling-type connector (for 4-conductor VCTF cable) plug (See note.)
XS2C-D4S7	Assembling-type connector (for 4 -conductor VCTF socket) socket (See note.)

Note: The XS2G-D4S7 and XS2C-D4S7 will be released soon.

Assembling-type Connector Socket

Note: Only the XS2C-D4S7 with a diameter of 7 mm can be used for communications.

[^2]| Appearance | Applicable cable external dia. | Cable pull-outdirection | No. of poles | Connection method | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | Crimp | Solder | Screw |
| | 6 dia. (5 to 6 dia.) | Straight | 4 | XS2G-D4C1 | XS2G-D421 | XS2G-D4S1 |
| | | L-shaped | | -- | XS2G-D422 | XS2G-D4S2 |
| | 5 dia. (4 to 5 dia.) | Straight | | XS2G-D4C3 | XS2G-D423 | XS2G-D4S3 |
| | | L-shaped | | --- | XS2G-D424 | XS2G-D4S4 |
| | 3 dia. (3 to 4 dia.) | Straight | | XS2G-D4C5 | XS2G-D425 | XS2G-D4S5 |
| | | L-shaped | | --- | XS2G-D426 | XS2G-D4S6 |
| | 7 dia. | Straight | | --- | --- | XS2G-D4S7 (see note) |

Note: Only the XS2G-D4S7 with a diameter of 7 mm can be used for communications.

Connectors with Cables (Single-end Socket Each) Power Supply

Appearance	Cable pull-out direction	No. of cable conductor	Cable length (m)	Standard cable	$\begin{gathered} \text { Robot cable } \\ \text { (vibration resistive) } \end{gathered}$
		4	1	XS2F-D421-C80-A	XS2F-D421-C80-R
			2	XS2F-D421-D80-A	XS2F-D421-D80-R
			5	XS2F-D421-G80-A	XS2F-D421-G80-R
			10	XS2F-D421-J80-A	XS2F-D421-J80-R
	L-shaped	4	1	XS2F-D422-C80-A	XS2F-D422-C80-R
			2	XS2F-D422-D80-A	XS2F-D422-D80-R
			5	XS2F-D422-G80-A	XS2F-D422-G80-R
			10	XS2F-D422-J80-A	XS2F-D422-J80-R

Connectors with Cables (Sockets and Plugs)
Power Supply and $1 / \mathrm{O}$

Appearance	Cable pull-out direction	No. of cable conductor	Cable length (m)	Standard cable	
	StraightStraight	4	1	XS2W-D421-C81-A	XS2W-D421-C81-R
			2	XS2W-D421-D81-A	XS2W-D421-D81-R
			5	XS2W-D421-G81-A	XS2W-D421-G81-R
	L-shapedL-shaped		2	XS2W-D422-D81-A	---
			5	XS2W-D422-G81-A	
	Straightl-shaped		2	XS2W-D423-D81-A	
			5	XS2W-D423-G81-A	
	L-shaped/Straight		2	XS2W-D424-D81-A	
			5	XS2W-D424-G81-A	

Connectors with Cables (Single-end Connector Each)

Appearance	Cable pull-out direction	No. of cable conductor	Cable length (m)	Standard cable
	Straight	3	0.3	XS2H-D421-ACO-A
		4		XS2H-D421-A80-A
		3	1	XS2H-D421-CCO-A
		4		XS2H-D421-C80-A

Connector Covers

Appearance	Product	Model	Application
	T-branch Connector	Branching communications lines and power lines	
	Connector Terminator (plug)	SRS2-1	Waterproof terminator
	Waterproof cover	xS2Z-12	Covers tor unused IOO connectors
	Dust cover		

Dimensions

Note: All units are in millimeters unless otherwise indicated
Models with 4 points
SRT2-IDO4CL/SRT2-IDO4CL-1
SRT2-OD04CL/SRT2-ODO4CL-1

Mounting Dimensions
Three, M5 or 5.3-dia. holes

Models with 8 points SRT2-ID08CL/SRT2-IDO8CL-1
SRT2-OD08CL/SRT2-ODO8CL-1

Mounting Dimensions

Installation

- Internal Circuit Diagrams

SRT2-ODO $\square C L$ (NPN)
SRT2-ODO $\square C L-1$ (PNP)

Connections Diagrams for Connectors

$$
\begin{aligned}
& \text { Communications Connector } \\
& \text { Communication } \\
& \begin{array}{l}
\text { Signal } \\
\text { BDH }
\end{array}
\end{aligned}
$$

IDO $\square(-1)$ Power
Supply Connecto ODO $\square(-1)$ Power ODuply (-1) Power
Supply C

IDO \square Input Connector (NPN)
 IDO \square - 1 Input Connector (PNP)

ODO \square Outpu Connect
(NPN) Solenoid and

opo Output Connect
(PNP) Solenoid and Solenoid and
Voltage

omROn

Sensor Terminals

Connector Connection Models that

Allows Easy Connection to Sensors and Output Devices

- Sensors with easy-to-wire connectors are easily attached or detached.
- Connects to 2-wire sensors
- Remote teaching of the Sensor Terminal is possible with the PLC by using output signals of the Senso Terminal
- DIN track mounting and screw mounting are available.

Ordering Information

Classification	Internal I/O circuit common	I/O points	Model
For input	NPN (-common)	8 input points	SRT2-ID08S
For //O	NPN (-common)	4 input/4 output points	SRT2-ND08S
For output	NPN (- common)	8 output points	SRT2-OD08S

Specifications

- Ratings

Input

Item	
Input current	10 mA max./point
ON delay time	1 ms max.
OFF delay time	1.5 ms max.
ON voltage	12 VDC min. between each input terminal and V_{CC}, the external sensor power supply
OFF voltage	4 VDC max. between each input terminal and V_{CC}, the external sensor power supply
OFF current	1 mA max.
Insulation method	Photocoupler
Input indicator	LED (yellow)

Output

Item	SRT2-ND08S	SRT2-OD08S
Rated output current	$20 \mathrm{~mA} /$ point	$300 \mathrm{~mA} /$ point
Residual voltage	$1 \mathrm{~V} \mathrm{max}$.	$0.6 \mathrm{~V} \mathrm{max}$.
ON delay time	1 mm max.	--
OFF delay time	1.5 mm max.	--
Leakage current	0.1 mA max.	
Insulation method	Photocoupler	
Output indicator	LED (yellow)	

Characteristics

Communications power supply voltage (see note 1)	14 to 26.4 VDC
Current consumption (see note 2)	$50 \mathrm{~mA} \mathrm{max}$.
Connection method	Multi-drop method and T-branch method
Dielectric strength	500 VAC for 1 min (1-mA sensing current between insulated circuits)
Noise immunity	Conforms to IEC61000-4-4 2 kV (power lines)
Vibration resistance	10 to $55 \mathrm{~Hz}, 1.5-\mathrm{mm}$ double amplitude
Shock resistance	Malfunction: $200 \mathrm{~m} / \mathrm{s}^{2}$ Destruction: $300 \mathrm{~m} / \mathrm{s}^{2}$
Mounting method	M4 screw mounting or $35-\mathrm{mm}$ DIN track mounting
Mounting strength	No damage when 50 N pull load was applied for 10 s in all directions (except the DIN track directions and a pulling force of 10 N)
Terminal strength	No damage when 50 N pull load was applied for 10 s in all directions Tighten each screw to a torque of 0.6 to $1.18 \mathrm{~N} \cdot \mathrm{~m}$
Ambient temperature	Operating: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ (with no icing or condensation) Storage: $-20^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$ (with no icing or condensation)
Ambient humidity	Operating: 35% to 85%
Weight	SRT2-ID08S/OD08S: 100 g max., SRT2-ND08S: $80 \mathrm{~g} \mathrm{max}$.

Note: 1. The communications power supply voltage must be 20.4 to 26.4 VDC if the Unit is connected to 2 -wire proximity sensors.
2. The above current consumption is a value with all the points turned OFF excluding the current consumption of the sensor connected
2. The above current consul
to the Sensor Terminal.

- External Sensor Power Supply

Power supply voltage	13.5 to 26.4 VDC
Current consumption	500 mA max. in total

Nomenclature

SRT2-ID08S
SRT2-ND08S

Indicator	Name	Display	Color	Meaning	
PWR	Power supply	Lit	Green	The communications power supply is ON.	
		Not lit		The communications power supply is OFF.	
COMM	Communication	Lit	Yellow	Normal communications	
		Not lit		A communications error has occurred or the Unit is in standby status.	
ERR	Communication error	Lit	Red	A communications error has occurred.	
		Not lit		Normal communications or the Unit is in standby status.	
0 to 3 (4 inputs/outputs) 0 to 7 (8 inputs) 0 .	Input	Lit	Yellow	The corresponding input is ON .	
		Not lit		The corresponding input is OFF or the Unit is in standby status.	
$\begin{aligned} & 0 \text { to } 3 \\ & \text { (4 inputs/outputs) } \end{aligned}$	Output	Lit	Yellow	The corresponding output is ON.	
		Not lit		The corresponding output is OFF or the Unit is in standby status.	
Switch Setting All pins are factory-set to OFF.				Pin 5 (Communications Mode Setting)	
				Pin 5	Communications mode
				OFF	High-speed communications mode
				ON	Long-distance communications mode

```
N
```

Pin 6 (Output HOLD/CLEAR Mode)
(SRT2-ND08S Only)
(SRT2-ND08S Only)

HOLD	Function
OFF	Output status is cleared when a communications error occurs.
ON	Output status is maintained when a communications error occurs.

Node Number Settings

Node number	\mathbf{l}			
0	OFF	OFF	OFF	$\mathbf{4}$
1	ON	OFF	OFF	
2	OFF	ON	OFF	OFF
3	ON	ON	OFF	OFF
4	OFF	OFF	OFF	OFF
5	ON	OFF	ON	OFF
6	OFF	ON	ON	OFF
7	ON	ON	ON	
8	OFF	OFF	ON	OFF
9	ON	OFF	OFF	ON
10	OFF	ON	OFF	ON
11	ON	ON	OFF	ON
12	OFF	OFF	OFF	ON
13	ON	OFF	ON	ON
14	OFF	ON	ON	ON
15	ON	ON	ON	ON

SRT2-ODO8S

Indicator	Name	Display	Color	Meaning
PWR	Power supply	Lit	Green	The communications power supply is ON .
		Not lit		The communications power supply is OFF.
COMM	Communication	Lit	Yellow	Normal communications
		Not lit		A communications error has occurred or the Unit is in standby status.
ERR	Communication error	Lit	Red	A communications error has occurred.
		Not lit		Normal communications or the Unit is in standby status.
OUTO to 7	Output	Lit	Yellow	The corresponding output is ON .
		Not lit		The corresponding output is OFF or the Unit is in standby status.

Switch Setting

ETVETB
$\begin{array}{r}123456 \\ \hline 124\end{array}$

Pin 5 (Communications Mode Setting)

Pin 5	Communications mode
OFF	High-speed communications mode
ON	Long-distance communications mode

Pin 6 (Output HOLD/CLEAR Mode)

HOLD	Function
OFF	Output status is cleared when a communicitaios error occurs.
ON	Output status is maintained when a communications error occurs.

Node Number Settings

Node number	4	3	2	1
0	OFF	OFF	OFF	OFF
1	OFF	OFF	OFF	ON
2	OFF	OFF	ON	OFF
3	OFF	OFF	ON	ON
4	OFF	ON	OFF	OFF
5	OFF	ON	OFF	ON
6	OFF	ON	ON	OFF
7	OFF	ON	ON	ON
8	ON	OFF	OFF	OFF
9	ON	OFF	OFF	ON
10	ON	OFF	ON	OFF
11	ON	OFF	ON	ON
12	ON	ON	OFF	OFF
13	ON	ON	OFF	ON
14	ON	ON	ON	OFF
15	ON	ON	ON	ON

Dimensions

Note: All units are in millimeters unless otherwise indicated.

SRT2-ND08S

Cable Connector for SRT2- \square D08S

Applicable conductor size $\left(\mathbf{m m}^{2}\right)$	Model
0.3 to 0.5	XS8A-0441
0.14 to 0.2	XS8A-0442
0.3 to 0.5	XS8BB-0443

XS8A-044 \square (Cable Connector)

XS8B-0443 (Relay Socket)

Calculate the cable conductor size as explained below.
he following information is given on each sensor cable: Cable dia. (Number of conductors/Conductor dia.)
解ductor size $\left(\mathrm{mm}^{2}\right)=(\text { Conductor dia. } / 2)^{2} \times \pi \times$ Number of conductors
4 dia. $(18 / 0.12)$
Conductor size
($\left.\mathrm{mm}^{2}\right)=(0.12 / 2)^{2} \times 3.14 \times 18 \approx 0.20$

Installation

- Internal Circuit Configuration

SRT2-OD08S

- External Connections

SRT2-ID08S
SRT2-ND08S
Sensor with Teaching Function Sensor with External Diagnostic functio Sensor with Bank-swit ing Function

- Terminal Arrangement and I/O Device Connection Example

Precautions

Refer to the CompoBus/S Operation Manual (W266-E1) before

using the Un

General Safety Precautions

Installation Environment
Do not install the Unit in the following places.

- Places with water, oil, or chemical sprayed on the Unit.

Places with rapid temperature changes

- Places with high humidity resulting in condensation
- Places with intense electric and magnetic fields.
- Places with excessive vibration or shock.

Wiring
To prevent inductive noise, do not wire power lines or high-tension To prevent inductive noise, do not
nes along with or near the cables,
Make sure that the polarity of each terminal is correct.
Make sure that the communications path and power line are con
nected correctly. ected correctly.
Secure the cables properly. Do not pull the cables with strong force,
otherwise the cables may be disconnected from the terminals or therwise the cables mat.
connectors of the Unit.
Do not touch the Unit when the Unit is used in places with high amb ent temperatures because the surface temperature of the Unit may be high.
, surface will be damaged or discolored.
Correct Use
Use the Unit under its rated conditions.
Mount the Unit with M4 screws or to DIN tracks securely.
Typical Causes of Communications Errors

- The cables are not connected correctly.

The node number setting is incorrect

- The baud rate setting is incorrect.
- There is a strong noise source, such as an inverter motor, near the Unit. Install the Unit as far as possible from the noise source

Othe

Use OMRON's XS8A-0441 or XS8A-0442 Connectors with the
Insert each connector into the Unit until the connector snaps in
place. Make sure that terminal number 1 of the connector is on the place. Make sure that terminal number 1 of the connector is on the ock lever side when inserting the connector
Refer to the CompoBus/S Operation Manual (W266-E1) for wiring Refer to th
the Unit.

omron

CompoBus/S Sensor Amplifier Terminals

Snap On to Connect and

Save Wiring Effort

- The 4-channel fiber photoelectric amplifiers in Terminals with connectors offer a low cost and space savings
- Connection of miniature and aluminum-detecting proximity sensors is supported.
- The product lineup included Terminal Block Units for easy connection to sensors with amplifiers, limit switches, etc.

Connect to up to eight channels of sensors by using Expansion Blocks.

- Features

Ordering Information

Classification	I/O points	Connection Unit	Model
Communications	4	$\begin{aligned} & \hline \text { E3X-NT■/E3X-DAD/E2CD-T1 } \\ & \text { 6/E39-JID01 (4 Units max.) } \end{aligned}$	SRT1-TID04S
		E3X-NM16 (1 Unit max.)	SRT1-TKD04S
Expansion		$\begin{aligned} & \text { E3X-NT } \square / E 3 X-D A 16 / E 2 C \square-T 1 \\ & \text { 6/E39-JID01 (4 Units max.) } \end{aligned}$	SRT1-XID04S
		E3X-NM16 (1 Unit max.)	SRT1-XKD04S

ote: Long-distance co munications mode is not supported.

Connection Units

	Classification	Specifications	Model
Photoelectric Sensor	Models with E3X-N-type connector	General-purpose, 1 channel	E3X-NT16
		Multi-functional, 1 channel	E3X-NT26
		Long distance, high accuracy, 1 channel	E3X-NH16
		Multi-functional, 4 channels	E3X-NM16
	Models with E3X-DA-type connector	Digital, general-purpose, 1 channel	E3X-DA16
Proximity Sensor	Models with E2CY-type connector	Used to detect aluminum	E2CY-T16
	Models with E2C-T-type connector	Miniature	E2C-T16
Terminal Block Unit		One input point	E39-JID01

Specifications

Characteristics

CompoBus/S Sensor Amplifier Terminals

Item	Communication Terminals		Expansion Terminals	
Model	SRT1-TID04S	SRT1-TKD04S	SRT1-XID04S	SRT1-XKD04S
Communications power supply voltage	14 to 26.4 VDC (See note 1)		---	---
I/O points	4 input points			
Connected Sensors	$\begin{array}{\|l} \text { Total of four E3X-NT } \square 6, \\ \text { E3XX-NH16, E3X-NA16, } \\ \text { E2C T-T16, or } \\ \text { E39-ID01 (See note 2) } \\ \hline \end{array}$	One E3X-NM16 (See note 2)	Total of four E3X-NT■6, E3X-NH16, E3X-DA16, E2C口-T16, or E39-JID01	One E3X-NM16
Current consumption	60 mA max. (See note 3) 10 mA max. (See note 3) 500 VAC for 1 min (1-mA sensing current between insulated circuits)			
Dielectric strength				
Noise immunity	Power supply normal: $\pm 600 \mathrm{~V}$ for 10 minutes with a pulse width of 100 ns to $1 \mu \mathrm{~s}$ Power supply common: $\pm 1,500 \mathrm{~V}$ for 10 minutes with a pulse width of 100 ns to $1 \mu \mathrm{~s}$			
Vibration resistance	10 to $55 \mathrm{~Hz}, 1.5-\mathrm{mm}$ double amplitude			
Shock resistance	Malfunction: $200 \mathrm{~m} / \mathrm{s}^{2}$Destruction: $\quad 300 \mathrm{~m} / \mathrm{s}^{2}$			
Mounting method	M4 screw mounting or 35-mm DIN track mounting			
Mounting strength	No damage when 50 N pull load was applied for 10 s in all directions (except the DIN track directions and a pulling force of 10 N			
Terminal strength	No damage when 49 N pull load was applied for 10 s in all directions. Tighten each screw to a torque of 0.6 to $1.18 \mathrm{~N} \cdot \mathrm{~m}$.			
Ambient temperature	Operating: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ (with no icing or condensation) Storage: $-20^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$ (with no icing or condensation)			
Ambient humidity	Operating: 35% to 85%			
Weight	70 gmax .	65 g max .	45 g max.	35 g max.

Note: 1. The communications power supply voltage must be 20.4 to 26.4 VDC if the Terminal is connected to 2 -wire proximity sensors.
2. When adding Connection Units, use SRT1-XID04S or SRT1-XKD04S.
3. The value does not include the current consumption of Connection Units.

Model	E3X-DA16	E3X-NH16	E3X-NT16	E3X-NT26	E3X-NM16
Current consumption	75 mA max.		50 mA max.		150 mA
Response time	High-speed mode: 0.25 ms (operate/release) Standard mode: 1 ms (operate/release) Long-distance mode: 4 ms (operate/release) 4.0 ms max. when connected to the SRT1-GDD04S (standard mode)	1 ms max. (4.0 ms max when connected to the \qquad	$500 \mu \mathrm{~S}$ max. (2.0 ms max. when connected to the SRT1- \square D04S)		
Timer function	OFF-delay timer (settable in the range 0 to 200 ms in 5 -ms units)	Not available		OFF-delay timer (fixed to 40 ms)	
Remote teaching input	Not available			Available (Remote teaching disabled)	
Indicator	Operation indicator (orange), 7-segment digital incident level display (red), 7 -segment digital incident level percentage display (red), inciden level and threshold 2-color indication bar (green and red), 7 -segment digital threshold display (red)	Operation indicator (orange) 8 -level incident level indicator (green) 13-level threshold indicator (red)			
Teaching confirmation function	Indicators (red/green LED) and buzzer				
Output	Light ON and Dark ON switch selectable				
Ambient illumination	Sunlight: 20,000 lux max.; incandescent lamp: 10,000 lux max.	Sunlight: 10,000 lux max.; incandescent lamp: 3,000 lux max.			
Insulation resistance	$20 \mathrm{M} \Omega$ max. (at 500 VDC)				
Dielectric strength	$1,000 \mathrm{VAC}$ at $50 / 60 \mathrm{~Hz}$ for 1 min				
Vibration resistance	Destruction:10 to $55 \mathrm{~Hz}, 1.5-\mathrm{mm}$ double amplitude				
Shock resistance	Destruction:500 m/s ${ }^{2} 3$ times each in X, Y, and Z directions				
Mounting method	Connected to the SRT1-■DD04S using connectors.				
Mounting strength	No damage when 49 N pull load was applied for 10 s in all directions.				
Ambient temperature	Operating: $-25^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ (with no icing or condensation) Storage: $\quad-30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing or condensation)	Operating: $-25^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ (with no icing or condensation)Storage: $\quad-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing or condensation)			
Ambient humidity	Operating: 35% to 85% (with no condensation)Storage: $\quad 35 \%$ to 85% (with no condensation)				
Weight	60 gmax .	30 g max.	30 g max.	30 g max.	60 g max.

Supply voltage	12 to $24 \mathrm{VDC} \pm 10 \%$, ripple (p-p): 10% max.
Current consumption	40 mA max.
Sensing distance adjustment range	10\% min. of stable sensing distance
Adjustment method	Teaching
Differential travel	10\% max. of sensing distance in FINE mode. 15% max. of sensing distance in NORM mode.
Response time	Refer to the response frequency of the Sensor Head in use.
Control output	NPN open collector output of 100 mA max . with a max. residual voltage of 1 V
Self-diagnostic output	NPN open collector output of 100 mA max . with a max. residual voltage of 1 V
Circuit protection	Reverse polarity, surge voltage, and load short-circuit (for both control output and diagnosis output)
Cord length compensation	Freely cut or extended within a range between 0.5 and 5 m
Indicators	Operation indicator (orange) Excess gain level indicators (ON in green with sensing object in proximity and ON in orange with no sensing object in proximity) Fine-tuning indicator (green)
Ambient temperature	Operating: -10 to $55^{\circ} \mathrm{C}$ (with no icing or condensation)
Ambient humidity	Operating: 35% to 85% (with no condensation)
Influence of temperature on sensing distance (at $23^{\circ} \mathrm{C}$)	$\pm 10 \%$ max. ($-10^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$)
Insulation resistance	$50 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC) between current carry parts and case
Dielectric strength	$1,000 \mathrm{VAC}(50 / 60 \mathrm{~Hz})$ for 1 min between current carry parts and case
Vibration resistance	Destruction: 10 to $150 \mathrm{~Hz}, 1.5-\mathrm{mm}$ double amplitude or $100 \mathrm{~m} / \mathrm{s}^{2}$ for 2 hours each in X, Y, and Z directions
Shock resistance	Destruction: $300 \mathrm{~m} / \mathrm{s}^{2}$ for 3 hours each in X, Y, and Z directions
Mounting method	Connected to the SRT1-■पD04S using connectors.
Mounting strength	No damage when 49 N pull load was applied for 10 s in all directions.
Degree of protection	IEC60529 IP50 with the sensor cord and protective cover attached
Material	Case: PTB resin Cover: PC
Teaching monitor function	Orange and green indicators shared by operation and excess gain indication
Output status	Normally open or normally closed selectable
Weight (packaged state)	Approx. 30 g

Item			Sensor Head			
			E2C-CR5B2	$\begin{aligned} & \text { E2C-CR8A } \\ & \text { E2C-CR8B } \end{aligned}$	$\begin{aligned} & \text { E2C-X1A } \\ & \text { E2C-C1A } \end{aligned}$	E2C-x1R5A
Supply voltage			12 to $24 \mathrm{VDC} \pm 10 \%$ (operation: 10 to $26.4 \mathrm{VDC)}$), ripple (p-p): $\pm 10 \%$ max.			
Current consumption			50 mA max.			
Sensing distance adjustment range(see note 1)	Setting distance for teaching without sensing object (see note 2)		0.4 mm min.	0.72 mm min.	0.9 mm min.	1.35 mm min.
	Setting distance for teaching with and without sensing object or positioning teaching	$\begin{aligned} & 0+0 \\ & 40^{\circ} \mathrm{C} \end{aligned}$	0.1 to 0.7 mm	0.16 to 1.2 mm	0.2 to 1.5 mm	0.3 to 2 mm
		$\begin{aligned} & 0 \text { to } \\ & 5_{5}^{\circ} \mathrm{C} \end{aligned}$	0.1 to 0.5 mm	0.16 to 0.8 mm	0.2 to 1.0 m	0.3 to 1.5 mm
Temperature influence			$\pm 25 \%$ max. of sensing distance at $23^{\circ} \mathrm{C}(0$ to $55^{\circ} \mathrm{C}$)	$\pm 10 \%$ max. of sensing distance at $23^{\circ} \mathrm{C}\left(0\right.$ to $55^{\circ} \mathrm{C}$)		
Differential travel			15% max. of sensing distance	10\% max. of sensing distance		
Response time			Refer to the response frequency of the Proximity Sensor in use.			
Control output			NPN open collector output of 100 mA max. at 26.4 V with a residual voltage of 1 V max NO/NC selectable (NO: ON with a sensing object)			
Cord length compensation			3 m only 1,2, or 3 m selectable			
Indicators			Operation indicator (orange) and stability indicator (green)			
Teaching monitor function			Indicators (orange and green) also used for stability indication.			
Ambient temperature			Operating: 0 to $55^{\circ} \mathrm{C}$ (with no icing or condensation)			
Ambient humidity			Operating: 35\% to 95\% (with no icing)			
Voltage influence			$\pm 1 \%$ max. of sensing distance within a range of 90% to 110% of the rated power supply voltage			
Insulation resistance			$50 \mathrm{M} \Omega$ min. at 500 VDC between current carry parts and case			
Dielectric strength			1,000 VAC ($50 / 60 \mathrm{~Hz}$) for 1 min between current carry parts and case			
Vibration resistance			Destruction: 10 to $55 \mathrm{~Hz}, 1.5 \mathrm{~mm}$ double amplitude for 2 hours each in X, Y, and Z directions			
Mounting method			Connected to the SRT1-ם D04S using connectors.			
Mounting strength			No damage when 49 N pull load was applied for 10 s in all directions.			
Degree of protection			IEC60529 IP50			
Weight			Approx. $\mathbf{3 0 \mathrm { g }}$			

Note: 1. Perform positioning teaching within the stable sensing distance, otherwise reset failures may result when the E2C-T is in operation If a fine-difference teaching is performed with and without a sensing object, reset failures may result when the E2C-T is in operation even if teaching is successful.
to

Terminal Block Uni

Model	E39-JID01
Input current	10 mA max.
ON voltage	12 VDC min. between input terminal and external sensor power supply
OFF voltage	4 VDC max. between input terminal and external sensor power supply
OFF current	1 mA max.
ON delay time	$1 \mathrm{~ms} \mathrm{max}. \mathrm{(connected} \mathrm{to} \mathrm{SRT1-} \mathrm{\square} \mathrm{\square D04S)}$
OFF delay time	1.5 ms max. (connected to SRT1-■[D04S)
Input indicators	LED (Orange)
External sensor current capacity	50 mA max.
Vibration resistance	10 to $55 \mathrm{~Hz}, 1.5-\mathrm{mm}$ double amplitude
Shock resistance	Malfunction: $\quad 200 \mathrm{~m} / \mathrm{s}^{2}$ Destruction: $\quad 300 \mathrm{~m} / \mathrm{s}^{2}$
Mounting method	M4 screws or $35-\mathrm{mm}$ DIN track mounting
Mounting strength	No damage when 50 N pull load was applied for 10 s in all directions (except the DIN track directions and a pulling force of 10 N)
Terminal strength	No damage when 49 N pull load was applied for 10 s in all directions. Tighten each screw to a torque of 0.6 to $1.18 \mathrm{~N} \cdot \mathrm{~m}$.
Ambient temperature	Operating: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ (with no icing or condensation) Storage: $\quad-20^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$ (with no icing or condensation)
Ambient humidity	Operating: 35% to 85\%
Weight	25 g max.

Nomenclature

SRT1-TIDO4S
SRT1-TKDO4S

Indicators

Indicator	Name	Display	Color	Meaning
PWR	Power supply	Lit	Green	The communications power supply is ON .
		Not lit		The communications power supply is OFF.
COMM	Communications	Lit	Yellow	Normal communications.
		Not lit		A communications error has occurred or the Unit is in standby status.
ERR	Communications error	Lit	Red	A communications error has occurred.
		Not		Norma

Dimensions

Note: All units are in millimeters unless otherwise indicated.
SRT1-TIDOAS

Mounting Holes

SRT1-XIDO4S

SRT1-XKD04S

Mounting Holes

E3X-NT $\square 6$

E3X-NH16

E3X-DA16

E39-JD01

E2CY-T16

E2C-T16

Installation

- Internal Circuit Configuration E39-JID01

Precautions

Refer to the CompoBus／S Operation Manual（W266－E1）before using General－purpose Sensors and the Equivalent CompoBus／S Sensors		
CompoBus／S product	General－purpose product product	Difference
E3X－NT16	E3X－NT11	External
E3X－NT26	E3X－NT21	appearance only
E3X－NM16	E3X－NM11	
E3X－NH16	E3X－NH11	
E3X－DA16	E3X－DA11	
E2CY－T16	E2CY－T11	
E2C－T16	E2C－T11	

General Safety Precautions

Connection Units
Use only the Connection Units listed in this data sheet for the Sen
E39－JID01 Terminal Block Unit
not apply any voltage to the Terminal Block Unit

Correct Use

Expanding Sensor Amplifier Terminals
Remove the cover from the side of the SRT1－TロD04S．（See
Figure 1．）
Figure 1．）
When the cover is removed，you can see the expansio
ector inside．
Connect this expansion connector to the connector located

Figure 1

Attaching and Removing Connection Units

Attaching and Removing Connection Units
Sensor Amplifier Terminal Connection Unit SRT1－TID04S E3XX－DA16 SRT1－XID04S E3X－NTD6 E339－JID01 E3X－NH E2C E2C－T－T16 E2C－T16

（SRT1－TID04S，SRT1－XID04S，E3X－NT $\square 6$, E39－JID01）
Attaching Connection Units
1．Hook Section A of the Connection Unit onto Section B of the Sensor Amplifier Terminal．
2．Push in the Connection Unit until Section C locks inside

Botom View雨渭品

Removing Connection Units
1．While pushing Section D，pull the Connection Unit in direction
2．When Section D releases from the lock，the Connection Unit can be removed．

Attaching or Removing Connection Unit

Sensor Amplifier Terminal	Connection Unit
SRT1-TKD04S	E3X-NM16
SRT1-XKD04S	

Attaching Connection Unit

1. Hook Section A of the Connection Unit onto Section B of the - Hook Section A of the Conn
2. Push in the Connection Unit until Section C locks inside

Removing Connection Unit

1. While pushing Section D, pull the Connection Unit in direction
2. When Section D releases from the lock, the Connection Unit can be removed.

Channel Numbers

Channel numbers 1 to 4 of the E3X-NM16 correspond to contac umbers 0 to 3 of the SRT1-TKD04S, and to contact numbers 4 to 7
of the SRT1-XKD04S.

OmROn

Analog Input Terminal

Compact Analog Input Model is the

Same Shape as 16 -point Remote I/O

Terminals
Allows flexible input point settings up to a maximum f four points.
Resolution: 1/6,000
Takes only 1 ms to exchange each input point.

- Wide input ranges available
- $105 \times 48 \times 50(\mathrm{~W} \times \mathrm{H} \times \mathrm{D})$

Ordering Information

500 VAC tor min beiween communications power supply, analog input, and communications terminals (see note)
Note: There is no insulation between analog inputs.

- Characteristics

Communications power supply voltage	14 to 26.4 VDC (possible to provide through Special Flat Cable)
Current consumption	100 mA max.
Connection method	Multi-drop method and T-branch method
Dielectric strength	500 VAC (between insulated circuits)
Noise immunity	Conforms to IEC61000-4-4, 2 kV (power lines)
Vibration resistance	10 to $150 \mathrm{~Hz}, 1.0-\mathrm{mm}$ double amplitude or $70 \mathrm{~m} / \mathrm{s}^{2}$
Shock resistance	$200 \mathrm{~m} / \mathrm{s}^{2}$
Mounting strength	No damage with 100 N pull load applied in all directions.
Terminal strength	No damage with 100 N pull load applied
Screw tightening torque	0.3 to $0.5 \mathrm{~N} \cdot \mathrm{~m}$
Ambient temperature	$\begin{array}{\|ll} \hline \text { Operating: } & -10^{\circ} \mathrm{C} \text { to } 55^{\circ} \mathrm{C} \\ \text { Storage: } & -25^{\circ} \mathrm{C} \text { to } 65^{\circ} \mathrm{C} \\ \hline \end{array}$
Ambient humidity	Operating: 25% to 85% (with no condensation)
Weight	Approx. 120 g

Nomenclature

SRT2-AD04

DIN Track Mounting Hook

Indicator	Name	Color	Display	Meaning
PWR	Power supply	Green	Lit	The communications power supply is ON .
			Not lit	The communications power supply is OFF.
COMM	Communication	Yellow	Lit	Normal communications
			Not lit	A communications error has occurred or the Unit is in standby status.
ERR	Communication error	Red	Lit	A communications error has occurred.
			Not lit	Normal communications or the Unit is in standby status.
U.ERR	Unit error	Red	Lit	An error has occurred in the Unit.
			Not lit	Normal communications or the Unit is in standby status.

DIP Switch (SW101)

Pin 1	Pin 2	Input points
OFF	OFF	4 points (default setting)
OFF	ON	3 points (inputs 0 to 2 enabled)
ON	OFF	2 points (inputs 0 and 2 enabled)
ON	ON	1 point (input 0 enabled)
Pin 3	Communications mode	
OFF	High-speed communications (default setting)	
ON	Long-distance communications	
Pin 4	Be sure to turn OFF.	
Pin No.		Node address
Pin 5	2^{3}	
Pin 6	2^{2}	
Pin 7	2^{1}	
Pin 8	2^{0}	

Pin 1	Pin 2	Pin 3	Range for inputs 0, 1
Pin 4	Pin 5	Pin 6	Range for inputs 2, 3
OFF	OFF	OFF	0 to 5 (V) (default setting)
ON	OFF	OFF	1 to 5 (V)
OFF	ON	OFF	0 to 10 (V)
ON	ON	OFF	-10 to 10 (V)
OFF	OFF	ON	4 to 20 (mA)
ON	OFF	ON	0 to 20 (mA)
Do not make any settings other than the ones listed above.			
Pin 7	Mean value processing		
OFF	Without mean value processing (default setting)		
ON	With mean value processing (mean for 8 operations)		
Pin 8	Be sure to turn OFF.		

Dimensions

Note: All units are in millimeters unless otherwise indicated.
SRT2-AD04

Installation

■ Internal Circuit Configuration SRT2-AD04

- Terminal Arrangement

SRT2-ADO4

Note: When the input is current input, short-circuit the " V_{+}" terminals and the "Il" terminals. When short-circuiting, use the short-circuiting tool provided as an accessory.

Precautions

Refer to the CompoBus/S Operation Manual (W266-E1) before
using the Unit.

OmROn

Analog Output Terminal

Compact Analog Output Model is the
Same Shape as 16-point Remote I/O
Terminals
Two output points or 1 output point is selectable.

- Resolution: 1/6,000
- $105 \times 48 \times 50(\mathrm{~W} \times \mathrm{H} \times \mathrm{D})$

Ordering Information

Classification	I/O points	Model
Analog Output Terminal	1 or 2 (selectable with DIP switch)	SRT2-DA02

Specifications

- Ratings

Output

Item		Voltage output	Current output
External output permissibleload resistance load resistance		$5 \mathrm{k} \Omega$ min.	600Ω max.
Output impedance		0.5Ω max.	---
Resolution		1/6,000 (FS)	
$\begin{array}{\|l\|l\|} \hline \text { Total } \\ \text { accuracy } \end{array}$	$25^{\circ} \mathrm{C}$	$\pm 0.4 \%$ FS	
	-10 to $55^{\circ} \mathrm{C}$	$\pm 0.8 \%$ FS	
Conversion time		$2 \mathrm{~ms} / 2$ points and $2 \mathrm{~ms} / 1$ point	
Dielectric strength		500 VAC for 1 min between communications power supply, analog output, and communications terminals (see note)	

500 VAC for 1 min between

- Characteristics

Communications power supply voitage	14 to 26.4 VVC (power supply possibie from Special Flat Cabie)
Current consumption (see note)	170 mA max.
Connection method	Multi-drop method and T-branch method
Dielectric strength	500 VAC (between insulated circuits)
Noise immunity	Conforms to IEC61000-4-4, 2 kV (power lines)
Vibration resistance	10 to $150 \mathrm{~Hz}, 1.0 \mathrm{~mm}$ double amplitude or $70 \mathrm{~m} / \mathrm{s}^{2}$
Shock resistance	$200 \mathrm{~m} / \mathrm{s}^{2}$
Mounting strength	No damage when 100 N pull load was applied in all directions
Terminal strength	No damage when 100 N pull load was applied
Screw tightening torque	0.3 to $0.5 \mathrm{~N} \cdot \mathrm{~m}$
Ambient temperature	$\begin{array}{ll} \hline \text { Operating: } & -10^{\circ} \mathrm{C} \text { to } 55^{\circ} \mathrm{C} \\ \text { Storage: } & -25^{\circ} \mathrm{C} \text { to } 65^{\circ} \mathrm{C} \\ \hline \text { S } \end{array}$
Ambient humidity	Operating: 25% to 85\% (with no condensation)
Weight	Approx. 100 g

[^3]
Nomenclature

SRT2-DA02

Indicator	Name	Color	Display	Meaning			
PWR	Power supply	Green	Lit	The communications power supply is ON.			
			Not lit	The communications power supply is OFF.			
COMM	Communication	Yellow	Lit	Normal communications			
			Not lit	A communications error has occurred or the Unit is in standby status.			
ERR	Communication error	Red	Lit	A communications error has occurred.			
			Not lit	Normal communications or the Unit is in standby status.			
U.ERR	Unit error	Red	Lit	An error has occurred in the Unit.			
			Not lit	A communications error has occurred or the Unit is in standby status.			
DIP Switch (SW101) (Open cover to access.)				DIP Switch (SW102) (Open cover to access.)			
				Pin 1	Pin 2	Pin 3	Range for output 0
$\rightarrow \mathrm{ON}$				Pin 4	Pin 5	Pin 6	Range for output 1
Pin 1	Be sure to turn OFF.			OFF	OFF	OFF	0 to 5 (V) (default setting)
Pin				ON	OFF	OFF	1 to 5 (V)
Pin 2	Output points			OFF	ON	OFF	0 to 10 (V)
OFF	2 points (default setting)			ON	ON	OFF	-10 to 10 (V)
ON	1 point (output 0 enabled)			OFF	OFF	ON	4 to 20 (mA)
Pin 3	Communications mode			Do not make any settings other than the ones listed above.			
OFF	High-speed communications (default setting)			Pin 7	Pin 8	Output during communications error	
ON	Long-distance communications			OFF	OFF	Clear at the output lower limit when communications error occurs. (default setting)	
Pin 4	Be sure to turn OFF.						
Pin No.	Node addresses			OFF	ON	Clear at the output upper limit when communications error occurs.	
Pin 5	2^{3}			ON	OFF	Clear at the output lower limit when communications error occurs (however, if the range is -10 to 10 V , the output will be 0).	
Pin 6	2^{2}						
Pin 7	2^{1}						
Pin 8	2^{0}			ON	ON	Output held when communications error occurs.	

Dimensions

Note: All units are in millimeters unless otherwise indicated.
SRT2-DA02

$$
\phi^{\text {Two, 4.2 dia. or M4 }}-\infty
$$

Installation

■ Internal Circuit Configuration SRT2-DA02

■ Terminal Arrangement
SRT2-DA02

BD							
L	BS	NC	NC	NC	$\mathrm{O-}$	NC	$1-$

Precautions

Refer to the CompoBus/S Operation Manual (W266-E1) before using the Uni

omron

Remote I/O Modules

Module Type that Allows PCB Mounting

- Compact size at $60 \times 16 \times 35(\mathrm{~W} \times \mathrm{H} \times \mathrm{D})$
- Lineup now includes the 16 -point input model and 16 -point output model.

Ordering Information

I/O classification	Internal /O circuit common	$1 / 0$ points	Rated voltage	I/O rated voltage	Model
Input	NPN (+ common)	16	24 VDC	24 VDC	SRT2-ID16P
Output	NPN (-common)				SRT2-OD16P

Specifications

- Ratings

Input (SRT2-ID16P)

	Input current
ON delay time	2 mA max./point
OFF delay time	1.5 ms max.
ON voltage	1.5 ms max.
OFF voltage	15 VDC min. between each innut terminal and $\mathrm{BS}+$ terminal

Output (SRT2-OD16P)

Rated output current	0.2 A /point, 0.6 A /common
Residual voltage	0.6 V max. between each output terminal and G terminal at 0.2 A
Leakage current	0.1 mA max. between each output terminal and G terminal at 24 VDC

- Characteristics

Communications power supply voltage	20.4 to 26.4 VDC
10 power supply voltage	$24 \mathrm{VDC}+10 \% /-15 \%$
Current consumption (see note)	60 mA max.
Connection method	Multi-drop method and T-branch method
Connecting Units	8 Input Terminals and 8 Output Terminals per Master
Dielectric strength	500 VAC for 1 min (1-mA sensing current between insulated circuits)
5-V output current	$20 \mathrm{~mA} \mathrm{max}$. ($5 \mathrm{~V} \pm 0.5 \mathrm{~V}$)
LED drive current (COMM, ERR)	$10 \mathrm{~mA} \mathrm{max}$. (5 VDC)
SW carry current (ADRO to 3, HOLD)	1 mA max.
Ambient temperature	Operating: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ (with no icing or condensation) Storage: $-20^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$ (with no icing or condensation)
Ambient humidity	Operating: 35% to 85%
Weight	35 g max .

Note: The above current consumption is the value with all points turned ON excluding the current consumption of the external sensor connected to the input model and the current consumption of the load connected to the output model.

Dimensions

Note: All units are in millimeters unless otherwise indicated.
SRT2-ID16P
SRT2-OD16P

Installation
■ Internal Circuit Configuration

- External Connections

Input Module (SRT2-ID16P)
Output Module (SRT2-OD16P)

Node Number Settings and
Output HOLD/CLEAR Mode

Note: Refer to the CompoBus/S Operation Manual (W266-E1) for details on the switch.

Precautions
Refer to the CompoBus/S Operation Manual (W266-E1) before

orrect Use

Noise Protection Circuit
Add the following protection circuit if noise is generated from the power supply, input section, or output section.

Input Section Noise Protection Circuit

R_{1} : Resistor for limiting photocoupler's input
D: Diode for protecting the photocoupler
C: Condenser for absorbing noise
R_{2} : Resistor for limititing the operating leve
PHC: Photocoupler
V: \quad DC power supply

Indicators

R: LED current limiting resistor
R: $\begin{aligned} & \text { LED 1: current } \\ & \text { LED } \\ & \text { LED2: } \\ & \text { LED for } \operatorname{ERM} M\end{aligned}$
The maximum current for LED1 and 2 is 10 mA .
The 5 -V Output Terminals have positive power supplies (maximum output current of 20 mA) for the ERR and COMM LEDs. Recom mended LED colors are red for ERR and yellow for COMM.

Output Section Noise Protection Circuit

C: Capacitance of $0.1 \mu \mathrm{~F}$ min.
R: Limiting resistor
SA: Varistor \quad Diode for protecting against counterelectromotive PHC: Photocoupler
V: DC power supply
-v Output Terminals
The 5 -V Output Terminals have positive power supplies (maximum
 shown below. Recommended LED colors are red for ERR and yel
low for COMM.

Wiring Method

R: LED current limiting resistor
LED1: LED for COMM
The maximum current for the LED1 and 2 is 10 mA .

Cleaning the PCB

- Perform soldering using a soldering iron at a temperature between 280 and $300^{\circ} \mathrm{C}$ in less than 3 seconds, or at
temperature less than $280^{\circ} \mathrm{C}$ in less than 5 seconds.
nure less han 2 in liess than 5 second.
Do not clean the PCB flux either using highly acidic or alkaline detergents, or using ultrasonic cleaning.
NC Terminals
C terminals are used internally. Do not make any connections to the NC terminals.

omron

Position Drivers

Advanced Servodrivers with Positioner

Functions
DIO and CompoBus/S Models are Newly Added

- Servodriver and positioner are combined into one Unit
Conventional U-series, U-series UE type, H -series,
and M-series AC Servomotors can be used.
- Feeder control/DTP control and single operation automatic incremental/continuous operation ar vailable.
Easy to set, operate, and adjust.

Ordering Information

Specifications			Model
CompoBus/S models	For 200-VAC input	6 A	FND-X06H-SRT
		12 A	FND-X12H-SRT
		25 A	FND-X25H-SRT
	50 A	FND-X50H-SRT	
	For 100-VAC input	6 A	FND-X06L-SRT
		12 A	FND-X12L-SRT

Note: For details, refer to OMNUC FND-X-series User's Manual (I524).
Specifications

- General Specifications

Ambient temperature	Operating: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ Storage: $-10^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Ambient humidity	Operating: 35% to 90% (with no icing) Storage: 35% to 90% (with no icing)
Operating atmosphere	No corrosive gases
Dielectric strength	$1,500 \mathrm{VAC}_{\text {RMS }}$ for 1 min at $50 / 60 \mathrm{~Hz}$
Insulation resistance	$5 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC) between power input terminals and between the power terminal and the case
Vibration resistance	10 to 150 Hz in X, Y, and Z directions with $0.10-\mathrm{mm}$ single amplitude; acceleration: $9.8 \mathrm{~m} / \mathrm{s}^{2}$ max.; time coefficient: 8 min; 4 sweeps
Shock resistance	$98 \mathrm{~m} / \mathrm{s}^{2}$ max., three times each in X, Y, and Z directions
Degree of protection	Built into panel (IP00)

- Performance Specifications

DIO models (see note 1)		FND-X06L	FND-X12L	FND-X06H	FND-X12H	FND-X25H	FND-X50H			
CompoBus/S models(see note 1)		FND-X06L-SRT	FND-X12L-SRT	FND-X06H-SRT	FND-X12H-SRT	FND-X25H-SRT	FND-X50H-SRT			
Item										
Continuous output current (0-P)		2.0 A	3.0 A	2.0 A	4.8 A	8.0 A	20 A			
Momentary maximum output current (0-P)		6.0 A	12 A	6.0 A	12 A	25 A	50 A			
$\begin{aligned} & \text { Input } \\ & \text { power } \\ & \text { soupply } \end{aligned}$	Main circuit	Single-phase 100/115 VAC (85 to 127 V) $50 / 60 \mathrm{~Hz}$ (The same terminals are used for the main circuit and the control circuit.)		Single-phase 200/240 VAC (170 to 264 V) $50 / 60 \mathrm{~Hz}$ (The same terminals are used for the main circuit and the control circuit.)			3-phase 200/240 VAC (170 to 264 V) $50 / 60 \mathrm{~Hz}$			
	Control circuit			Single-phase 200/240 VAC (170 to 264 V) $50 / 60 \mathrm{~Hz}$						
$\begin{array}{\|l\|l\|} \hline \begin{array}{l} \text { Position/s } \\ \text { peed } \\ \text { feedback } \end{array} \end{array}$	$\begin{aligned} & \text { U Series } \\ & \text { (INC) } \end{aligned}$	30 to 750 W: Optical incremental encoder, 2,048 pulses/revolution 1 to 2 kW : Optical incremental encoder, 4,096 pulses/revolution								
	USeries (ABS)	30 to 750 W: Optical absolute encoder, 1,024 pulses/revolution 1 to 2 kW : Optical absolute encoder, 8,192 pulses/revolution								
	$\stackrel{\text { U-UE }}{ }$	Optical incremental encoder, 1,024 pulses/revolution								
	HSeries	Magnetic incremental encoder 2,000 pulses/revolution								
	M Series	Resolver, absolute accuracy 0.18° max.; ambient temperature $25^{\circ} \mathrm{C}$								
Applicable load inertia	$\begin{aligned} & \hline \text { USeries } \\ & \text { (INC) } \end{aligned}$	Maximum of 30 times motor's rotor inertia					Maximum of 30 times motor's rotor inertia		Maximum of 20 times motor's rotor for $1-\mathrm{kW}$ motor)	Maximum of 10 times motor's rotor inertia
	$\begin{array}{\|l\|} \hline \text { U Series } \\ \text { (ABS) } \end{array}$	Maximum of 20 times motor's rotor inertia		Maximum of 20 times motor's rotor inertia		Maximum of 18 times motor's rotor inertia (10 times for $1-\mathrm{kW}$ for 1 -kW motor)	$\begin{aligned} & \text { Maximum of } 10 \\ & \text { times motor's rotor } \\ & \text { ineritia } \end{aligned}$			
	$\underset{\text { Series }}{\text { U-UE }}$	Maximum of 30 times motor's rotor inertia		Maximum of 30 times motor's rotor inertia		Maximum of 20 times motor's rotor inertia	---			
	HSeries	Maximum of 10 times motor's rotor inertia								
	M Series	Maximum of 10 times motor's rotor inertia								
Inverter method		PWM method based on IGBT								
PWM frequency		10 kHz								
Weight		Approx. 1.5 kg		Approx. 1.5 kg		Approx. 2.5 kg	Approx. 4.5 kg			
Frequency response (speed control)		100 Hz (at a load inerria equivalent to motor's rotor ineriia)								
Position loop gain		1 to 200 (rad/s)								
Feed forward		0\% to 200\% of speed reference								
Pulse rate		$1 / 32,767 \leq$ (pulse rate 1 / pulse rate 2) $\leq 32,767 / 1$								
Positioning completion width		1 to 32,767 (pulses)								
Acceleration/Decelerati on time		0 to 9,999 (ms); acceleration and deceleration times set separately. Two types can be set for each. S-curve acceleration/deceleration function available (filter time constant: 0.00 to 32.76 s).								
Sequence input		19 pts. (limit inputs, origin proximity, RUN command, START, alarm reset, origin search, JOG operation, teaching, point selection, position data, deceleration stop) Photocoupler input: 24 VDC, 8 mA External power supply: $24 \mathrm{VDC} \pm 1 \mathrm{~V}, 150 \mathrm{~mA}$ min.								
Sequence output		5 pts. (brake output, READY, origin search completion, origin, teaching, motor running, positioning completion, alarm, point output, position selection, speed selection) Open collector output: 24 VDC, 40 mA								
	Speed monitor	$3 \mathrm{~V} /$ motor's rated speed (output accuracy: approx. $\pm 10 \%$)								
	Current	3 V /motor's maximum current (output accuracy: approx. $\pm 10 \%$)								
Regenerative absorption capacity		$13 \mathrm{~W}+17 \mathrm{~J}$	$17 \mathrm{~W}+17 \mathrm{~J}$	$13 \mathrm{~W}+17 \mathrm{~J}$	$24 \mathrm{~W}+17 \mathrm{~J}$	$37 \mathrm{~W}+22 \mathrm{~J}$	$160 \mathrm{~W}+38 \mathrm{~J}$			
Protective functions		Overcurrent, overvoltage, voltage drop, resolver disconnection, power status error, clock stopped, overcurrent (soft), speed amp saturation, motor overload, temporary overload, resolver error, speed over, error counter over, parameter setting error, backup error, absolute encoder checksum error, absolute encoder absolute error, absolute encoder over speed, encoder data not transmitted, BCD data error, present value undetermined, PTP data not set								

Note:

[^4]
Dimensions

Note: All units are in millimeters unless otherwise indicated.
200-VAC FND-X06H-SRT/-X12H-SRT
100-VAC FND-X06L-SRT/-X12L-SRT

200-VAC FND-X25H-SRT

Mounting Holes

200-VAC FND-X50H-SRT

OmROn

Peripheral Devices

Special Flat Cable Allows

Communication Path Extension

 and T-branching with Ease

Ordering Information
VCTF Cable Products

Product	Appearance	Model	Specification
Terminal-block Terminator		SRS1-T	Resistance: 100Ω
T-branch Connector		XS2R-D427-5	Used to branch communications lines and power lines. (Waterproof specifications)
Connector Terminator (plug)		Waterprof terminating resistance	

Special Flat Cable Products

Product	Appearance	Model	Specification
Branch Connector	SCN1-TH4	Used with Special Flat Cable.	
Extension Connector			
Connector Terminator	SCN1-TH4E	Used with Special Flat Cable.	
		SCN1-TH4T	
Special Flat Cable		Used with Special Flat Cable.	

Note: Branch Connectors and Extension Connectors are sold in blocks of 10 Units.
Four-core VCTF Cable Products

Product	Appearance	Model	Specification
Assembling Connector	XS2C-D4S7	Communications Connector plug for 4-conductor VCTF cable	
		Communications connector socket for 4-conductor VCTF cable	

Specifications

- Ratings/Characteristics

Rated current	4 A
Contact resistance	$20 \mathrm{~m} \Omega$ max.
Insulation resistance	$1,000 \mathrm{M} \Omega$ min. (at 500 VDC$)$
Withstand voltage	$1,000 \mathrm{VAC}$ for 1 min, leakage current: 1 mA max.
Cable pulling strength	$50 \mathrm{~N}(5.1 \mathrm{kgf})$ min.
Operating temperature	$-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Operating temperature	$-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

\square Materials

Housing	PA66 resin (ULL94V-2) Branching and extension: Gray Terminatr: Black
Cover	Phosphor bronze and nickel base, tin plated
Contact	

Dimensions

Note: All units are in millimeters unless otherwise indicated.
SCN1-TH4 Branch Connector
SCN1-TH4E Extension Conne

SRS1-T Terminal-block Terminator

Mounting Holes

Precautions

Refer to the CompoBus/S Operation Manual (W266-E1) before
using the Unit.

Ordering Information

Note: Abbreviations for standards: U: UL, C: CSA, CE: EC Directive

Product	Appearance	Model	Specifications	Standards
CPM2C CPU Units with CompoBus/S Master		CPM2C-S100C	Incorporates CPM2C CPU Unit and controller functions 6 inputs and 4 outputs (sinking)	$\begin{aligned} & \hline U \\ & \text { U } \\ & \text { CE } \\ & \text { (see } \\ & \text { note) } \end{aligned}$
		CPM2C-S110C	Incorporates CPM2C CPU Unit and controller functions 6 inputs and 4 outputs (sourcing)	
Programmable Slaves		CPM2C-S100C-DRT	Incorporates CPM2C CPU Unit and controller functions 6 inputs and 4 outputs (sinking)	$\begin{array}{\|l\|} \hline U \\ \text { U } \\ \text { CE } \\ \text { (see } \\ \text { note) } \end{array}$
		CPM2C-S110C-DRT	Incorporates CPM2C CPU Unit and controller functions 6 inputs and 4 outputs (sourcing)	
Master Control Units	告	SRM1-C01-V2	Stand-alone model with built-in controller functions No RS-232C port, 256 I/O points (128 inputs and 128 outputs)	$\begin{array}{\|l\|} \hline U \\ C \\ \text { CE } \\ \text { (see } \\ \text { note) } \end{array}$
		SRM1-C02-V2	Stand-alone model with built-in controller functions No RS-232C port, 256 I/O points (128 inputs and 128 outputs)	
Master Units		C200HW-SRM21-V1	For CS1, C200HX/HG/HE (-ZE), and C200HS 128 inputs and 128 outputs (256 points in total)	$\begin{array}{\|l\|} \hline U \\ \text { C } \\ \text { CE } \\ \text { (see } \\ \text { note) } \end{array}$
		CQM1-SRM21-V1	For CQM1 and CQM1H 64 inputs and 64 outputs (128 points in total)	
SYSMAC Boards with CompoBus/S Master		C200PC-ISA03-SRM	For C200HG-CPU43 128 inputs and 128 outputs (256 points in total)	$\begin{aligned} & \text { CE } \\ & \text { (see } \\ & \text { note) } \end{aligned}$
		C200PC-ISA13-SRM	For C200HX-CPU64 128 inputs and 128 outputs (256 points in total)	

Note: Long-distance communications mode is not supported.

Product	Appearance	Model	Specifications	Standards
I/O Link Units		CPM2C-SRT21	For CPM2C 8 inputs and 8 outputs	$\begin{array}{\|l\|} \hline \text { CE } \\ \text { (see } \\ \text { note) } \end{array}$
		CPM1A-SRT21	For CPM1A/CPM2A 8 inputs and 8 outputs	

Product	Appearance	Model	Specifications	Stan- dards
$\begin{aligned} & \hline \text { Transistor Remote I/O } \\ & \text { Terminals } \end{aligned}$		SRT2-ID04 SRT2-ID04-1 SRT2-OD04 SRT2-OD04-1	4 NPN inputs (+ common) 4 PNP inputs (-common) 4 NPN outputs (- common) 4 PNP outputs (+ common)	UCCE(seenote)
		SRT2-ID08 SRT2-ID08-1 SRT2-OD08 SRT2-OD08-1	8 NPN inputs (+ common) 8 PNP inputs (- common) 8 NPN outputs (- common) 8 PNP outputs (+ common)	
		SRT2-ID16 SRT2-ID16-1 SRT2-OD16 SRT2-OD16-1	16 NPN inputs (+ common) 16 PNP inputs (- common) 16 NPN outputs (- common) 16 PNP outputs (+ common)	
Transistor Remote I/O Terminals with 3-tier Terminal Block		SRT2-ID16T SRT2-ID16T-1 SRT2-MD16T SRT2-MD16T-1 SRT2-OD16T SRT2-OD16T-1	16 NPN inputs (+ common) 16 PNP inputs (- common) 16 NPN I/O points (inputs: + common; outputs: - common) 16 PNP I/O points (inputs: - common; outputs: + common) 16 NPN outputs (- common) 16 PNP outputs (+ common)	$\begin{array}{\|l\|} \hline U \\ \text { C } \\ \text { CE } \\ \text { (see } \\ \text { note) } \end{array}$
$\begin{aligned} & \hline \text { Relay-mounted Remote I/O } \\ & \text { Terminals } \end{aligned}$		SRT2-ROC08	8 relay outputs	$\begin{aligned} & \text { U } \\ & \text { CE } \\ & \text { CE } \\ & \text { (soe } \\ & \text { note) } \end{aligned}$
		SRT2-ROC16	16 relay outputs	
		SRT2-ROF08	8 power MOS FET relay outputs	
		SRT2-ROF16	16 power MOS FET relay outputs	
Transistor Remote I/O Terminals with Connectors		SRT2-ID32ML SRT2-ID32ML-1	32 NPN transistor inputs (+ common) 32 PN transistor inputs (- comman)	$\begin{aligned} & \text { CE } \\ & \text { (see } \\ & \text { note } \end{aligned}$
		SRT2-OD32ML SRT2-OD32ML-1 SRT2-MD32ML SRT2-MD32ML-1	32 NPN transistor outputs (- common) 32 PNP transistor outputs (+ common) 32 NPN transistor I/O points (inputs: + common; outputs: - common) 32 PNP transistor I/O points (inputs: - common; outputs: + common)	
		SRT2-VID08S SRT2-VID08S-1 SRT2-VOD08S SRT2-VOD08S-1	```8 NPN transistor inputs (+ common) 8 \text { PNP transistor inputs (- common)} 8NPN transistor outputs (- common) 8 PNP transistor outputs (+ common)```	$\begin{array}{\|l\|} \hline \mathrm{U} \\ \mathrm{C} \\ \text { CE } \\ \text { (see } \\ \text { note) } \\ \hline \end{array}$
	者	SRT2-VID16ML SRT2-VID16ML-1 SRT2-VOD16ML SRT2-VOD16ML-1	16 NPN transistor inputs (+ common) 16 PNP transistor inputs (- common) 16 NPN transistor outputs (- common) 16 PNP transistor outputs (+ common)	
		$\begin{aligned} & \hline \text { SRT2-ATT01 } \\ & \text { SRT2-ATTO2 } \\ & \hline \end{aligned}$	Mounting hook A Mounting hook B	

Product		Appearance	Model	Specifications	Stan-	
Waterproof Transistor Terminals			SRT2-ID04CL SRT2-ID04CL-1 SRT2-OD04CL SRT2-OD04CL-1	```4 NPN transistor inputs (+ common) 4 PNP transistor inputs (- common) 4 NPN transistor outputs (- common) 4 PNP transistor outputs (+ common)```	$\begin{array}{\|l\|} \hline \text { CE } \\ \text { (see } \\ \text { note) } \end{array}$	
			SRT2-ID08CL SRT2-ID08CL-1 SRT2-OD08CL SRT2-OD08CL-1	```8 NPN transistor inputs (+ common) 8 PNP transistor inputs (- common) 8 NPN transistor outputs (- common) 8 PNP transistor outputs (+ common)```		
Sensor Terminals		6	SRT2-ID08S SRT2-ND08S SRT2-OD08S	Sensor Terminals 8 inputs (NPN) 4 automatic teaching points (NPN) 8 outputs	---	
CompoBus/S Sensor Amplifier Terminals			SRT1-TID04S SRT1-TKD04S	4 communications points 4 communications points (to connect to the E3X-NM16)	---	
		SRT1-XID04S SRT1-XKD04S	$\begin{aligned} & 4 \text { expansion points } \\ & 4 \text { expansion points (to connect to } \\ & \text { the EX-NM16) } \end{aligned}$			
Connection Units (see note)	Photoelectric Sensors			E3X-NT16 E3X-NT26 E3X-DA16	1-channel general-purpose teaching 1-channel multi-functional, general-purpose teaching high-precision bar-display teaching 1-channel digital model	$\begin{aligned} & \text { U } \\ & \text { C } \\ & \text { CE } \\ & \text { (see } \\ & \text { note) } \end{aligned}$
			E3X-NM16	4-channel multi-functional, general-purpose teaching		
	Proximity Sensors		$\begin{aligned} & \text { E2CY-T16 } \\ & \text { E2C-T16 } \end{aligned}$	Aluminum detection Compact model with teaching function	$\begin{aligned} & \mathrm{U} \\ & \mathrm{C} \end{aligned}$	
	Terminal Block Unit		E39-JID01	One input point	---	
Analog Input Terminal			SRT2-AD04	1 to 4 inputs (set with DIP switch)	$\begin{array}{\|l\|} \hline U \\ C \\ \text { CE } \\ \text { (see } \\ \text { note) } \\ \hline \end{array}$	
Analog Output Terminal			SRT2-DA02	1 or 2 outputs (set with DIP switch)		
Remote I/O Modules			SRT2-ID16P SRT2-OD16P	16 NPN inputs (+ common) 16 NPN outputs (- common)	---	
Position Drive CompoBus/S	rs for		FND-X06H-SRT FND-X12H-SRT FND-X25H-SRT FND-X50H-SRT FND-X06L-SRT FND-X12L-SRT	6 A at 200-VAC input 12 A at $200-\mathrm{VAC}$ input 25 A at $200-\mathrm{VAC}$ input 50 A at $200-\mathrm{VAC}$ input 6 A at $100-\mathrm{VAC}$ input 12 A at 100 -VAC input	$\begin{aligned} & \text { UCE } \\ & \text { (see } \\ & \text { (soe) } \\ & \text { cote } \end{aligned}$	

Note: The Position Driver cannot be used in long-distance communications mode.

Peripheral Devices

Product	Appearance	Model	Specifications	Stan-
Terminal-block Terminator		SRS1-T	100Ω	---
T-branch Connector	(3)	XS2R-D427-5	Waterproof	
Connector Terminator (plug)		SRS2-1	Waterproof terminator	

Special Flat Cable Products

Product	Appearance	Model	Specifications	Standards
Branch Connector	N. M	SCN1-TH4	Connector for Special Flat Cable	---
Extension Connector		SCN1-TH4E		
Connector Terminator		SCN1-TH4T		
Special Flat Cable		SCA1-4F10	100 m	

Four-conductor VCTF Cable Products

Product	Appearance	Model	Specifications	Stan- dards
Assembling Connector	XS2C-D4S7	Connector plug for 4-conductor VCTF cable communications	--	
		XS2G-D4S7	Connector socket for 4-conductor VCTF cable communications	

Note: Information on EC Directives
Individual OMRON products that comply with EC Directives conform to the common emission standards of EMC Directives. Howeve, the emission characteristics of these products installed on customers' equipment may vary depending on the configuration, wiring layout, and other conditions of the control panel used. For this reason, customers are requested to check whether the emission chara teristics of the entire machine or equipment comply with the EMC Directives.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for I/O Modules category:
Click to view products by Omron manufacturer:
Other Similar products are found below :
70L-IDC5S 70L-OAC-L 70Z3289-4 G21960000700 G21960002700 G34960002700 G88104401 OACU C4SWOUT PB16H G34960001700 G3TA-OA101SZ-1 DC24 G77-S G78-16-E 5607189 DA5 ODC-24A IDC5P FC6A-N16B1 6421 70MRCQ32-HL G3TAOD201SDC24 C200H-LK201-V1 G3TA-OA202SZ-US DC12 GT1-OD16 GT1-AD04CST B7AM-6BS 70GRCQ24-HS 6422 84110410 GT1-OD16MX G7VC-OC16-B7 70MRCK24-DIN 62026402 PI/NI-2D/24 FC6A-J2C1 FC6A-KC1C FC6A-R081 FC6AJ8CU1 GP32900003700 641-480-5022 PB16H $84145010 ~ 84110210$ FRUSB1601 PCL-720+-BE FRRJ451601 AP24MX3DB25F ADAM-5053S-AE

[^0]: ## Output HOLD/CLEAR Setting for Communications Errors (SRT2-OD/MD32ML (-1)) The setting of SW4 of the DIP switch determines whether outp

[^1]: Note: For details about connecting the SRT2-VID or SRT2-VOD to the Master Unit, refer to page 25.

[^2]: Assembling-type Connector Plug

[^3]: Note: The above current consumption is the value with all point turned ON excluding the current consumption of the external load

[^4]: When using the
 motors ($-\mathrm{HA},-\mathrm{TA},-\mathrm{VA},-\mathrm{XA},-\mathrm{H}$, or -V modelis).
 2. For the monitor output, the monitor items and voltage polarity can be set by parameter UP-25 (monitor output selection)

