

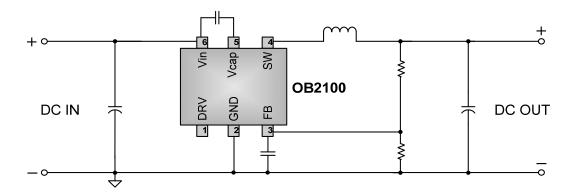
GENERAL DESCRIPTION

OB2100 is a High voltage hysteresis mode Buck converter. The input voltage can be as high as 70V and the output voltage is programmable by external resistor divider. It delivers up to 50mA load current with excellent line and load transient response. With On-Bright patented control scheme, OB2100 works with a wide input and output range with a minimum number of external components.

OB2100 automatically adjusts the switching frequency based on the output power. It provides output short circuit protection, over temperature protection, under voltage lock-out and cycle by cycle over current protection. When output short circuit happens, OB2100 enters hiccup mode until short circuit condition is released, which greatly saves the energy loss and avoid the chip overheating.

OB2100 provides soft startup control to avoid inrush output current.

OB2100 is provided with SOT23-6 package.

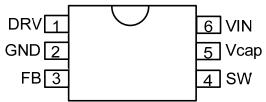

FEATURES

- Wide input voltage range (12V to 70V)
- Wide output voltage range (programmabled by external resistor divider)
- Up to 50mA output current
- Excellent line and load transient response
- Minimum number of external components
- Output short-Circuit protection
- Over temperature protection
- Cycle-by-cycle over current protection
- Under voltage lock-out

APPLICATIONS

LED lighting Portable device Motor driver

TYPICAL APPLICATION



GENERAL INFORMATION

Pin Configuration

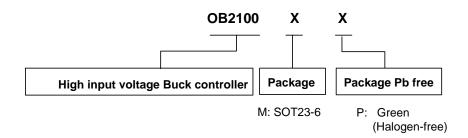
The pin map of OB2100 in SOT-23-6 package is shown as below.

Ordering Information

Part Number	Description		
OB2100MP	SOT23-6, T&R	Halogen-free	in

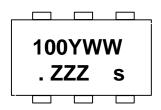
Package Dissipation Rating

Package	RθJA (℃/W)	
SOT23-6	200	


Recommended Operating Condition

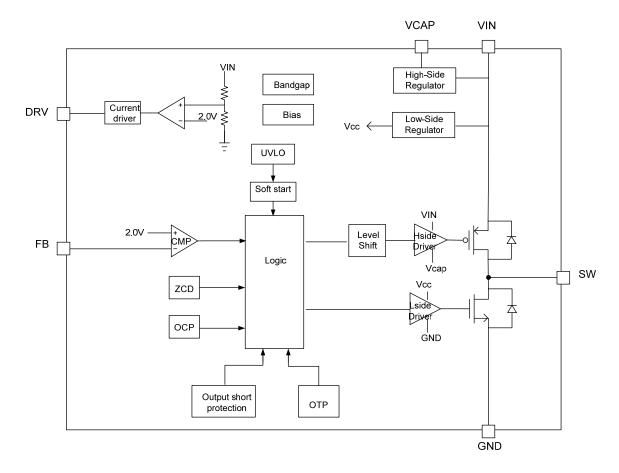
recommended operating condition						
Symbol	Parameter	Min	Max	Unit		
VIN	Input Voltage	12	70	V		

Absolute Maximum Ratings


Parameter	Value
VIN Voltage (room temperature)	-0.3V to 80V
Vcap Voltage	-0.3V to (VIN- 5V)
SW Voltage	-3V to VIN
DRV, FB Voltage	-0.3 to 8V
Min/Max Operating Junction Temperature T _J	-40 to 150 ℃
Operating Ambient Temperature T _A	-40 to 85 ℃
$ \begin{array}{c} \text{Min/Max Storage Temperature} \\ \textbf{T}_{\text{stg}} \end{array} $	-55 to 150 ℃
Lead Temperature (Soldering, 10secs)	260 ℃

Note: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.

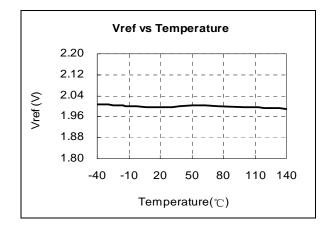
Marking Information

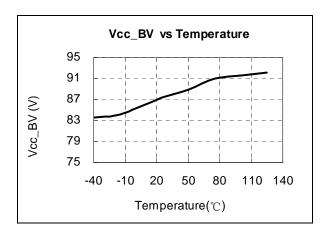

Y:Year Code WW:Week Code(01-52) ZZZ:Lot Code S:Internal Code

TERMINAL ASSIGNMENTS

Pin Num	Pin Name	1/0	Description
1	DRV	0	Sink current output Pin. It provides around 1mA current sink from the
'			PIN when 8V <vin<12v.< td=""></vin<12v.<>
2	GND	Р	Ground pin of the IC
2	FB	I	Output voltage feedback pin. A 100pF capacitor close to the IC is
3			recommended to be placed between this pin and pin GND.
4	SW	0	Power switch output Pin. Connect an inductor to this pin.
E	Vcap	0	High side regulator output pin. A 100nf capacitor close to the IC is
5			recommended to be placed between this pin and pin VIN.
6	VIN	I	External power supply input pin.

BLOCK DIAGRAM


ELECTRICAL CHARACTERISTICS


(T_A = 25°C, VIN=36V, if not otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit		
Supply Voltage Section								
la	Operation supply current	switching		550		uA		
Iq	Quiescent supply current	no switching		350		uA		
UVLO_on	Threshold of UVLO on	VIN falling		8		V		
UVLO_off	Threshold of UVLO off	VIN rising		9	10.8	V		
Vin_low VIN low feedback threshold voltage			10.8	12	13.2	V		
I_sink	Sink current	VDRV=2V		1		mA		
ОТР	Over temperature protection threshold			150		$^{\circ}$		
OTP_HYS	Over temperature protection hysteresis			20		$^{\circ}$		
BUCK Section		•				•		
Vref	Feedback compare reference voltage		1.9	2	2.1	V		
IL_limit	Inductor peak current limit threshold		120	140	160	mA		
T_sst	Soft start time			4		ms		
T_hiccup	Hiccup time			400		ms		
Vth_short	FB threshold voltage for Vout short protection			0.5		V		
T_max_on	The max high side turn on time		48	60	72	us		
T_deadtime Dead time				60		ns		
Rdson_p Rdson of PMOS power transistor				10	20	Ohm		
Rdson_n Rdson of NMOS power transistor				5	10	Ohm		

CHARACTERIZATION PLOTS

OPERATION DESCRIPTION

OB2100 is a high voltage hysteresis mode Buck converter. It always works in DCM mode. When FB voltage becomes lower than reference voltage and the inductor current decreases to zero, the high side power transistor will turn on to provide current to the output. When the inductor current reaches the current limit threshold value of 140mA (typical), OB2100 turns off the high side power transistor and then turns on the low side power transistor. When the inductor current reaches zero, the OB2100 turns off the low side power transistor.

UVLO protection

OB2100 integrated VIN under voltage lock-out protection (UVLO). It features hysteresis characteristic. When VIN rise up to above 9V (typical), OB2100 will start up and enter switching operation mode. When VIN decreases to under 8V (typical), OB2100 will stop switching operation.

Soft start

OB2100 implements soft start function. During the start-up procedure, the output voltage and inductor current increases up gradually. The soft start time is 4ms (typical).

Short circuit protection

At the end of soft startup, if output short circuit happens, the high side power transistor will not turn on after the last switching process finished. After around 400ms (typical), OB2100 resumes soft start procedure. The threshold for output short circuit detection is 0.5V (typical) for FB voltage.

Zero current detection (ZCD)

OB2100 integrates Zero Current Detection (ZCD) function. During the low side power transistor turnon phase, ZCD module detects the inductor current by sensing the SW voltage. When it detects the inductor current decreases to zero, OB2100 turns off the low side power transistor.

Current limit protection

OB2100 integrated current limit protection for preventing the inductor entering into saturation. After ZCD is detected the inductor current decreases to zero, if FB voltage is higher than the reference voltage of 2V (typical), both high side and low side power transistors are in off state. When FB voltage becomes lower than the reference voltage of 2V (typical), the high side power transistor turns on, and then the inductor current increases from zero. When and only when the inductor current increases to the peak current

limit threshold of 140mA (typical), OB2100 turns off the high side power transistor, and then turns on the low side power transistor after 60ns (typical) dead time for sustaining the inductor current. Then the inductor current starts decreasing until to zero. The above procedure repeats.

Over temperature protection

OB2100 turns off the switching operation mode when the IC junction temperature exceeds 150C (typical) and resumes the switching operation mode when the IC junction temperature drops to 130C (typical).

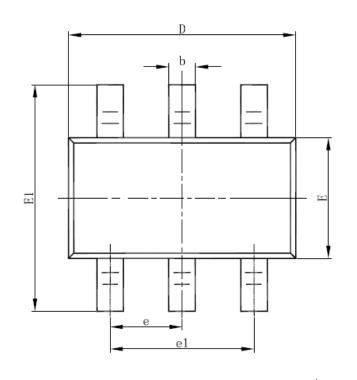
Switching frequency

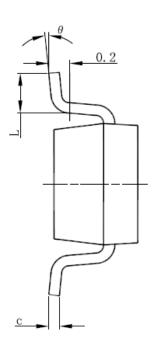
OB2100s works in DCM mode and the average inductor current equals to the load current. The switching frequency determined by the following equation:

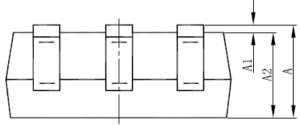
$$F = \frac{2I_{out}}{I_{limit}^2 L} * \frac{V_{out}(V_{in}-V_{out})}{V_{in}}$$

High side voltage regulator

OB2100 integrates a high side voltage regulator to generate a 'VIN-5V' floating ground (at pin Vcap) voltage for high side power transistor. For Vin rising slope of faster than 8V/us, a greater than 200pF capacitor is recommended to be connected between pin VIN and pin Vcap.


Sink current


OB2100 integrates a current sink to provide driving current for opto-coupler which can be used as control signal transfer to primary side controller in applications such as LED lighting. The current source sinks around 1mA (typical) current from the pin DRV when VIN decreases to lower than 12V (typical) threshold voltage but above 8V (typical) UVLO on threshold voltage.



PACKAGE MECHANICAL DATA

SOT-23-6L PACKAGE OUTLINE DIMENSIONS

Symbol	Dimensions	In Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
А	1.000	1.450	0.039	0.057	
A1	0.000	0.150	0.000	0.006	
A2	0.900	1.300	0.035	0.051	
b	0.300	0.500	0.012	0.020	
С	0.080	0.220	0.003	0.009	
D	2.800	3.020 0.110	0.110	0.119	
E	E 1.500 E1 2.600	1.726	0.059	0.068	
E1		3.000	3.000 0.102		
е	0.950	(BSC)	0.037 (BSC)		
e1	1.800	2.000	0.071	0.079	

IMPORTANT NOTICE

RIGHT TO MAKE CHANGES

On-Bright Electronics Corp. reserves the right to make corrections, modifications, enhancements, improvements and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

WARRANTY INFORMATION

On-Bright Electronics Corp. warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with its standard warranty. Testing and other quality control techniques are used to the extent it deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. On-Bright Electronics Corp. assumes no liability for application assistance or customer product design. Customers are responsible for their products and applications using On-Bright's components, data sheet and application notes. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

LIFE SUPPORT

On-Bright Electronics Corp.'s products are not designed to be used as components in devices intended to support or sustain human life. On-bright Electronics Corp. will not be held liable for any damages or claims resulting from the use of its products in medical applications.

MII ITARY

On-Bright Electronics Corp.'s products are not designed for use in military applications. On-Bright Electronics Corp. will not be held liable for any damages or claims resulting from the use of its products in military applications.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Isolated DC/DC Converters category:

Click to view products by On-Bright manufacturer:

Other Similar products are found below:

ESM6D044440C05AAQ FMD15.24G PSL486-7LR PSR152.5-7IR Q48T30020-NBB0 AVO240-48S12B-6L AVO250-48S28B-6L NAN0505 HW-L16D JAHW100Y1 217-1617-001 22827 SPB05C-12 SQ24S15033-PS0S 18952 19-130041 CE-1003 CE-1004 GQ2541-7R
PSE1000DCDC-12V RDS180245 MAU228 419-2065-201 449-2075-101 J80-0041NL V300C24C150BG 419-2062-200 419-2063-401
419-2067-101 419-2067-501 419-2068-001 DCG40-5G DFC15U48D15 449-2067-000 XGS-0512 XGS-1205 XGS-1212 XGS-2412 XGS2415 XKS-1215 033456 NCT1000N040R050B SPB05B-15 SPB05C-15 SSQE48T25025-NAA0G L-DA20 HP3040-9RG HP1001-9RTG
XKS-2415 XKS-2412