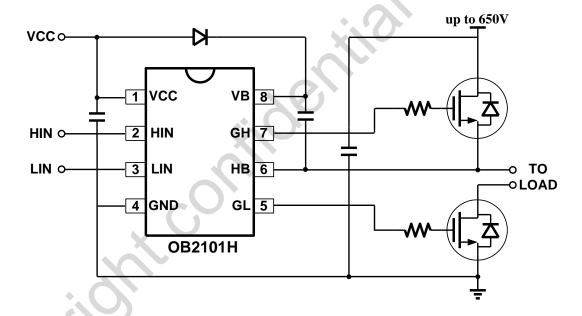


General Description

The OB2101H is a monolithic single-phase half-bridge gate driver IC designed for high voltage, high speed, driving power MOSFET and IGBT operating up to 650V.

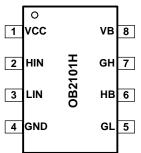

The OB2101H uses high voltage process and common mode noise canceling technique provides stable operation of high-side drivers under high dv/dt noise circumstance, and two output channels with internal deadtime to avoid cross-conduction.

The input logic level is compatible with standard 3.3V/5V. Output driver source and sink current 260mA and 530mA.

Features

- Floating channel for bootstrap operation up to 650V
- Positive input logic, and 3.3V/5V input logic compatible
- Built-in low-side supply under voltage lockout (UVLO)
- Built-in high side supply under voltage lockout (UVLO)
- Built-in cross conduction prevention logic
- Built-in dead time and matched propagation delay
- Available in SOP8 package

Typical Application



GENERAL INFORMATION

Pin Configuration

The pin map is shown as below for SOP8

Ordering Information

	Part Number	Description
Ī	OB2101HCP	SOP8, Halogen-free, Tube
	OB2101HCPA	SOP8, Halogen-free, T&R

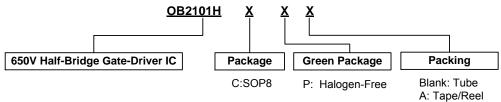
Package Dissipation Rating

Package	RθJA (℃/W)
SOP8	90

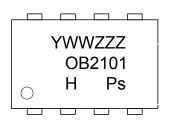
Note: Drain Pin Connected 100mm² PCB copper clad.

Absolute Maximum Ratings

Symbol	Description	Min	Max	Units
VB	High side floating supply voltage	-0.3	650	
V_{HB}	High side floating offset voltage	VB-25	VB+0.3	
V_{GH}	High side floating output voltage	V _{HB} -0.3	VB+0.3	V
VCC	Low side and supply voltage	-0.3	20	V
V_{GL}	Low side gate driver output	-0.3	VCC+0.3	
V _{IN}	Logic input voltage(HIN & LIN)	-0.3	VCC+0.3	
dV _{HB} /dt	Allowable offset voltage transient		50	V/ns
P_{D}	Package power dissipation@T _A ≤+25°C		0.6	W
T_J	Junction temerature	-40	150	°C
Ts	Storage temerature	-40	125	


Note: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.

Recommended Operating Conditions


For proper operation the device should be used within the recommended conditions.

Symbol	Description	Min	Max	Units
VB	High side floating supply voltage	V _{HB} +10	V _{HB} +20	
V_{HB}	High side floating offset voltage		600	
V_{GH}	High side floating output voltage	V_{HB}	VB	\/
VCC	Low side and supply voltage	10	15	V
V_{GL}	Low side gate driver output	0	VCC	
V_{IN}	Logic input voltage(HIN & LIN)	0	VCC	
T _A	Ambient temerature	-40	125	°C

Marking Information

Y:Year Code WW:Week Code(01-52) ZZZ:Lot Code H:Character Code P:Green Package(Halogen-free) S:Internal Code(Optional)

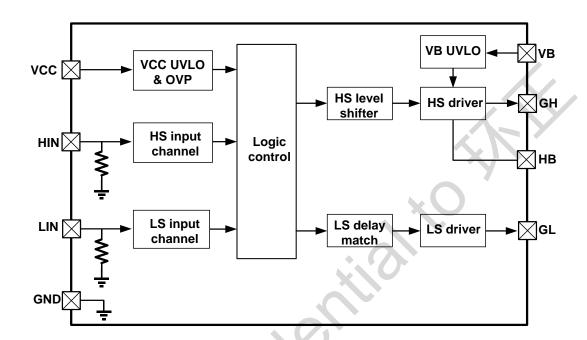
PIN Definitions

Symbol	Description
VCC	Low side supply voltage
HIN	Logic input for high side gate driver output(GH),in phase
LIN	Logic input for low side gate driver output(GL),in phase
GND	Low side ground
GL	Low side gate driver output
HB	High side floating supply return
GH	High side gate driver output
VB	High side floating supply

Dynamic Electrical Characteristics

Setup: VCC=VB=12V, GND=HB=0V and T_A =25°C unless otherwise specified.

Symbol	Description	Test Conditions	Min	Тур	Max	Units
GH_t _{on}	GH turn-on propagation delay		200	310	550	
GH_t _{off}	GH turn-off propagation delay		200	310	550	
GL_t _{on}	GL turn-on propagation delay		200	350	550	
GL_t _{off}	GL turn-off propagation delay		200	350	550	ns
t _r	Turn-on rise time	Cload=1nF		95		
t _f	Turn-off fall time	Cloau-IIIF		45		
MT	Delay matching HS & LS turn-on/off			40		


Static Electrical Characteristics

Setup: VCC=VB=12V, Cload=10nF and T_A =25°C unless otherwise specified.

Symbol	Description	Test Conditions	Min	Тур	Max	Units
V_{IH}	Logic"1"input voltage	VCC=12V	2			V
V_{IL}	Logic"0"input voltage	VCC-12V			8.0	V
I _{IN+}	Logic"1"input bias current	V _{IN} =5V		50	150	
I _{IN-}	Logic"0"input bias current	V _{IN} =0V			1	
I_{LK}	Offset voltage leakage current	VB=HB=600V			1	uΑ
I_{QBS}	Quiescent VBS supply current	HIN=LIN=0V		110	200	
I _{QCC}	Quiescent VCC supply current	HIN=LIN=0V		65	120	
V _{CCUV+}	VCC supply under voltage positive going threshold		7.3	8.3	9.3	
V _{CCUV-} VCC supply under voltage negative going threshold			7.8	8.8	9.8	V
V_{BSUV+}	V _{BSUV+} VBS supply under voltage positive going threshold		6.1	7.1	8.1	V
V_{BSUV}	VBS supply under voltage negative going threshold		6.5	7.5	8.5	
I _{SOURCE_GH}	Source current of GH driver	GH=15V, HIN=5V, with PW≤10us,	160	275		
I _{SINK_GH}	I _{SINK_GH} Sink current of GH driver		320	530		mA
I _{SOURCE_GL}	I _{SOURCE_GL} Source current of GL driver		150	260		IIIA
I _{SINK_GL}	Sink current of GL driver	GH=0V, HIN=0V, with PW≤10us,	350	590		

Functional Block Diagram

Typical Performance Chart

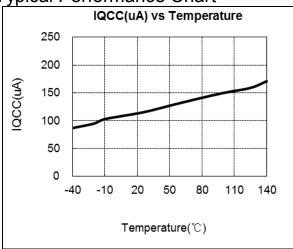
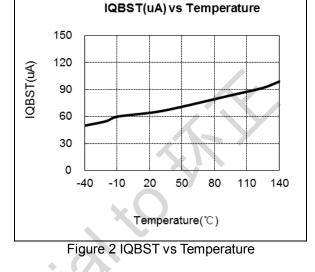



Figure 1 IQCC vs Temperature

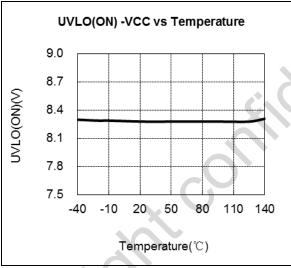


Figure 3 VCC UVLO(ON) vs Temperature

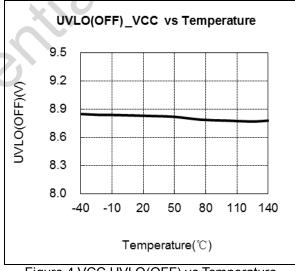


Figure 4 VCC UVLO(OFF) vs Temperature

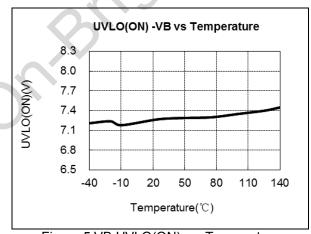


Figure 5 VB UVLO(ON) vs Temperature

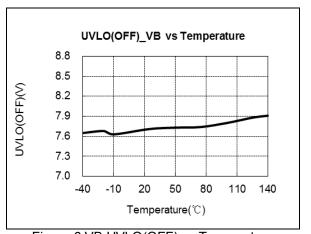


Figure 6 VB UVLO(OFF) vs Temperature

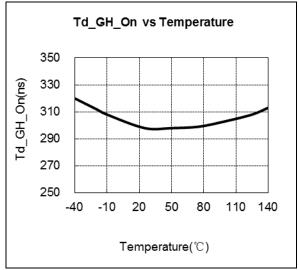


Figure 7 GH t_{ON} vs Temperature

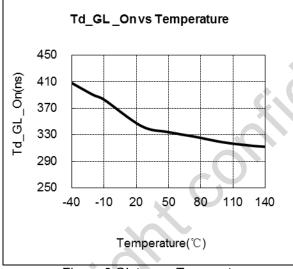


Figure 9 GL ton vs Temperature

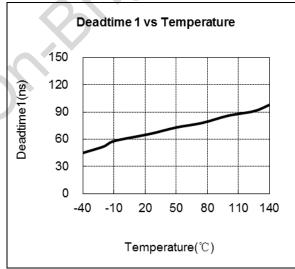


Figure 11 GLf to GHr Deadtime vs Temperature

Figure 8 GH t_{OFF} vs Temperature

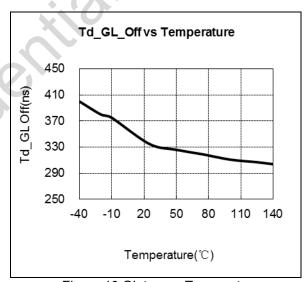


Figure 10 GL t_{OFF} vs Temperature

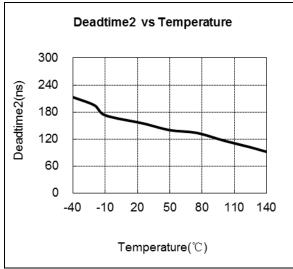


Figure 12 GHf to GLr Deadtime vs Temperature

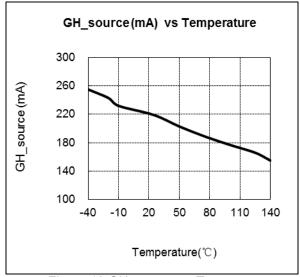


Figure 13 GH_source vs Temperature

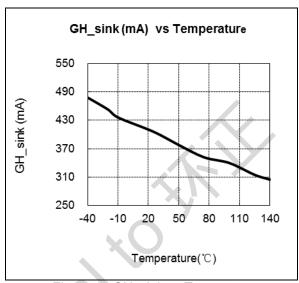


Figure 14 GH_sink vs Temperature

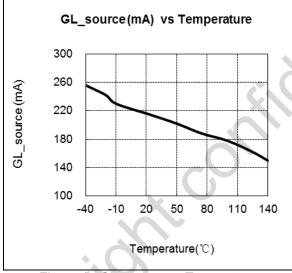


Figure 15 GL_source vs Temperature

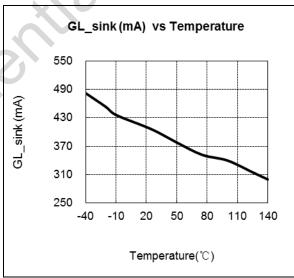
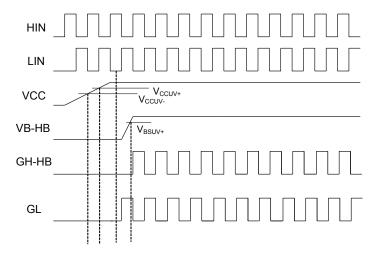



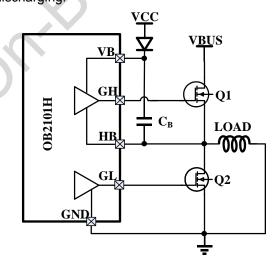
Figure 16 GL_sink vs Temperature

Timing Diagram

Operational Description

Power Supply

When VCC voltage increases above 8.8V (typical), OB2101H starts to work, open the gate drivers. When VCC voltage drops below 8.3V (typical), OB2101H shuts down the gate drivers. OB2101H will not resume working until the VCC voltage increases above 8.8V (typical).

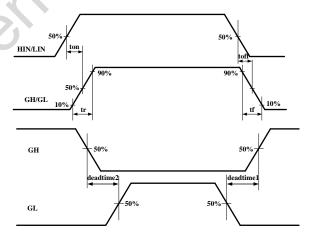

Low-Side Driver

The low-side driver is designed to drive a ground referenced N-channel MOSFET. Its low Rdson allows the external MOSFET to be turned on and off quickly. When a low-side driver is on, VCC voltage is applied to the gate of the external MOSFET.

High-Side Driver

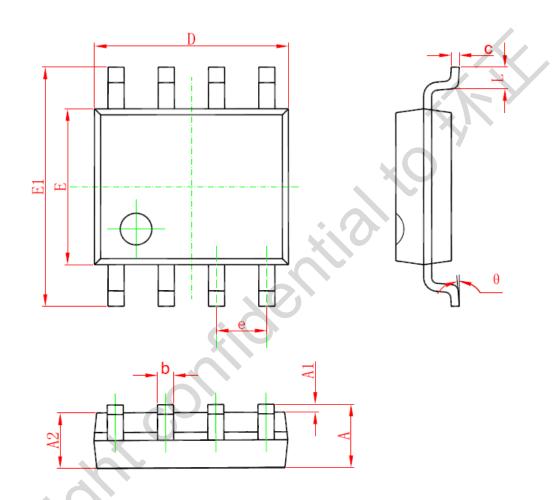
The high-side driver is designed to drive a floating N-channel MOSFET, whose source terminal is referenced to the HB pin. A low-power, high-speed, level-shifting circuit isolates the low-side referenced circuitry from the high-side referenced driver. Power to the high-side driver and UVLO circuit is supplied by the bootstrap circuit.

The bootstrap circuit consists of the diode and capacitor (C_B). In a typical application, the HB pin is at ground potential when the low-side MOSFET is on. The bootstrap diode allows capacitor C_B to be charged up to VCC-V_F during this time (where V_F is the forward voltage drop of the bootstrap diode). After the low-side MOSFET is turned off and the GH pin turns on, the voltage across capacitor C_B is applied to the gate of the upper external MOSFET. As the upper MOSFET turns on, voltage on the HB pin rises with the source of the high-side MOSFET until it reaches V_{BUS} . As the VB and HB pin rise, the bootstrap diode is reverse biased preventing capacitor C_B from discharging.



Propagation Delay and Dead-time

Propagation delay and dead-time are important considerations, as shown below. BLDC controllers use two switching MOSFETs operating complementarily. These MOSFETs must not be on at the same time or a short circuit will occur, causing high peak currents and higher power dissipation in the MOSFETs.


Make sure the input signal pulse width is greater than the minimum specified pulse width. An input signal that is less than the minimum pulse width results in no output pulse or an output pulse whose width is significantly less than the input.

The maximum duty cycle (ratio of high side ontime to switching period) is controlled by the minimum pulse width of the low side and by the time required for the $C_{\rm B}$ capacitor to charge during the off-time. Adequate time must be allowed for $C_{\rm B}$ capacitor to charge up before the high-side driver is turned on.

PACKAGE MECHANICAL DATA SOP8 PACKAGE OUTLINE DIMENSIONS

Cumbal	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min	Max	Min	Min	
Α	1.350	1.750	0.053	0.069	
A1	0.050	0.250	0.002	0.010	
A2	1.250	1.650	0.049	0.065	
b	0.310	0.510	0.012	0.020	
С	0.100	0.250	0.004	0.010	
D	4.700	5.150	0.185	0.203	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.270	(BSC)	0.050	(BSC)	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

IMPORTANT NOTICE

RIGHT TO MAKE CHANGES

On-Bright Electronics Corp. reserves the right to make corrections, modifications, enhancements, improvements and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

WARRANTY INFORMATION

On-Bright Electronics Corp. warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with its standard warranty. Testing and other quality control techniques are used to the extent it deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. On-Bright Electronics Corp. assumes no liability for application assistance or customer product design. Customers are responsible for their products and applications using On-Bright's components, data sheet and application notes. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

LIFE SUPPORT

On-Bright Electronics Corp.'s products are not designed to be used as components in devices intended to support or sustain human life. On-bright Electronics Corp. will not be held liable for any damages or claims resulting from the use of its products in medical applications.

MILITARY

On-Bright Electronics Corp.'s products are not designed for use in military applications. On-Bright Electronics Corp. will not be held liable for any damages or claims resulting from the use of its products in military applications.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Gate Drivers category:

Click to view products by On-Bright manufacturer:

Other Similar products are found below:

56956 57.404.7355.5 LT4936 57.904.0755.0 5811-0902 0131700000 LTP70N06 LVP640 5J0-1000LG-SIL LY2-US-AC240 LY3-UA-DC24 LZNQ2-US-DC12 LZP40N10 60100564 60249-1-CUT-TAPE 0134220000 6035 60713816 61161-90 6131-204-23149P 6131-205-17149P 6131-209-15149P 6131-218-17149P 6131-220-21149P 6131-260-2358P 6131-265-11149P CS1HCPU63 6150-5001 CSB4 CSK-38-60006 CSK-38-60008 621A 622-4053LF 6273 M40N08MA-H M55155/29XH06 64-807 65-1930-6 CV500ISB02 M83723/88Y1407N CWD012-2 CWD03-3 CX3225SB16934D0PPSC2 CX5032GB10000D0PPS02 687-772NF1 70.140.1653 70.200.0653.0 703001B01F060 70-3601 706006D02F0601