GENERAL DESCRIPTION

OB2358 combines a dedicated current mode PWM controller with a high voltage power MOSFET. It is optimized for high performance, low standby power, and cost effective off-line flyback converter applications in sub 27 W range.
OB2358 offers complete protection coverage with automatic self-recovery feature including Cycle-byCycle current limiting (OCP), over load protection (OLP), VDD over voltage clamp and under voltage lockout (UVLO). Excellent EMI performance is achieved with On-Bright proprietary frequency shuffling technique together with soft switching control at the totem pole gate drive output.
The tone energy at below 20 KHZ is minimized in the design and audio noise is eliminated during operation. OB2358 is offered in DIP8 package.

FEATURES

■ Power on Soft Start Reducing MOSFET Vds Stress

- Frequency shuffling for EMI

■ Extended Burst Mode Control For Improved Efficiency and Minimum Standby Power Design

- Audio Noise Free Operation

■ Fixed 50KHZ Switching Frequency

- Internal Synchronized Slope Compensation
- Low VDD Startup Current and Low Operating Current
■ Leading Edge Blanking on Current Sense Input
■ Good Protection Coverage With Auto SelfRecovery
o VDD Over Voltage Clamp and Under Voltage Lockout with Hysteresis (UVLO)
0 On-Bright Proprietary Line Input Compensated Cycle-by-Cycle Over-current Threshold Setting For Constant Output Power Limiting Over Universal Input Voltage Range.
0 Overload Protection (OLP).
o Over voltage Protection(OVP)

APPLICATIONS

Offline AC/DC flyback converter for

- $\mathrm{AC} / \mathrm{DC}$ adaptor
- PDA power supplies
- Digital Cameras and Camcorder Adaptor
- VCR, SVR, STB, DVD\&DVCD Player SMPS
- Set-Top Box Power

■ Auxiliary Power Supply for PC and Server

- Open-frame SMPS

TYPICAL APPLICATION

Output Power Table
406442781

Product	230VAC $\pm 15 \%$	85-265VAC
	Open Frame 1	Open Frame 1
OB2358	27 W	16 W

Notes

1. Maximum practical continuous power in an open frame design with sufficient drain pattern as a heat sink, at $50^{\circ} \mathrm{C}$ ambient.

GENERAL INFORMATION

Pin Configuration
The OB2358 is offered in DIP8 package as shown below.

Ordering Information

Part Number	Description
OB2358AP	DIP8, Pb-free

Package Dissipation Rating

Package	R θ JA (${ }^{\circ} \mathrm{C} / \mathrm{W}$)
DIP8	75

Note: Drain Pin Connected to 100 mm 2 PCB copper clad.

Absolute Maximum Ratings

Parameter	Value
Drain Voltage (off state)	-0.3 V to BVdss
VDD Voltage	-0.3 V to 30 V
VDD-G Input Voltage	-0.3 V to 30 V
VDD Clamp Continuous Current	10 mA
FB Input Voltage	-0.3 to 7 V
Sense Input Voltage	-0.3 to 7 V
Min/Max Operating Junction Temperature T_{J}	-20 to $150^{\circ} \mathrm{C}$
Min/Max Storage Temperature $\mathrm{T}_{\text {stg }}$	-55 to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, $10 \mathrm{secs})$	$260^{\circ} \mathrm{C}$

Note: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.

Marking Information

DIP8

Y:Year Code(0-9)
WW:Week Code(01-52)
A:DIP8 Package
P:Pb-free Package
S:Internal Code(Optional)

TERMINAL ASSIGNMENTS

Pin Name	I/O	Description
GND	P	Ground
FB	I	Feedback input pin. The PWM duty cycle is determined by voltage level into this pin and the current-sense signal at Pin 4.
VDD-G	P	Internal Gate Driver Power Supply
SENSE	I	Current sense input
VDD	P	IC DC power supply Input
Drain	O	HV MOSFET Drain Pin. The Drain pin is connected to the primary lead of the transformer

BLOCK DIAGRAM

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{VDD}=16 \mathrm{~V}\right.$, if not otherwise noted)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Supply Voltage (VDD)						
Istartup	VDD Start up Current	VDD $=14.5 \mathrm{~V}$,Measure Leakage current into VDD		5	20	uA
I_VDD Operation	Operation Current	$\mathrm{V}_{\mathrm{FB}}=3 \mathrm{~V}$		1.6		mA
UVLO(ON)	VDD Under Voltage Lockout Enter		8.7	9.7	10.7	V
UVLO(OFF)	VDD Under Voltage Lockout Exit (Recovery)		14.6	15.8	17.0	V
OVP(ON)	Over voltage protection voltage	$\mathrm{CS}=0 \mathrm{~V}, \mathrm{FB}=3 \mathrm{~V}$ Ramp up VDD until gate clock is off	27.0	28.5	30.0	V
VDD_Clamp	VDD Zener Clamp Voltage	$\mathrm{I}_{\mathrm{DD}}=10 \mathrm{~mA}$		30		V
Feedback Input Section(FB Pin)						
$\mathrm{V}_{\text {FB_- }}$ Open	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{FB}} \text { Open Loop } \\ \text { Voltage } \\ \hline \end{array}$		5.4	5.7	6.0	V
I_{FB} Short	FB pin short circuit current	Short FB pin to GND and measure current		1.45		mA
$\mathrm{V}_{\text {TH_ }}$ 0D	Zero Duty Cycle FB Threshold Voltage			0.8		V
$\mathrm{V}_{\text {TH_ }} \mathrm{PL}$	Power Limiting FB Threshold Voltage			3.7		V
T ${ }_{\text {D }}$ PL	Power limiting Debounce Time			50		mSec
$\mathrm{Z}_{\mathrm{FB}} \mathrm{IN}$	Input Impedance			4		Kohm
Current Sense Input(Sense Pin)						
Soft start time				4		ms
T_blanking	Leading edge blanking time			270		ns
$\mathrm{Z}_{\text {SENSE_I }} \mathrm{IN}$	Input Impedance			40		Kohm
$\mathrm{T}_{\mathrm{D}} \mathrm{OC}$	Over Current Detection and Control Delay	From Over Current Occurs till the Gatedrive output start to turn off		120		nSec
$\mathrm{V}_{\text {TH_ }} \mathrm{OC}$	Internal Current Limiting Threshold Voltage	$\mathrm{FB}=3.3 \mathrm{~V}$	0.72	0.77	0.82	V
Oscillator						
$\mathrm{F}_{\text {OSC }}$	Normal Oscillation Frequency		45	50	55	KHZ
©f_Temp	Frequency Temperature Stability			5		\%

\triangle f_VDD	Frequency Voltage Stability			5		$\%$
D_max	Maximum duty cycle	FB=3.3V, CS =0V	70	80	90	$\%$
F_Burst	Burst Mode Base Frequency			22		KHZ
Mosfet Section	MOSFET Drain- BVdss Source Breakdown Voltage		600			V
Rdson	Static, Id=1.0A			4.4	5.5	Ω
Frequency Shuffling	Frequency Modulation range /Base frequency	-4		4	$\%$	
Df_OSC						

CHARACTERIZATION PLOTS

(The characteristic graphs are normalized at $\mathrm{Ta}=25^{\circ} \mathrm{C}$)

OPERATION DESCRIPTION

The OB2358 is a low power off-line SMPS Switcher optimized for off-line flyback converter applications in sub 27 W power range. The 'Extended burst mode' control greatly reduces the standby power consumption and helps the design easily to meet the international power conservation requirements.

- Startup Current and Start up Control

Startup current of OB2358 is designed to be very low so that VDD could be charged up above UVLO threshold level and device starts up quickly. A large value startup resistor can therefore be used to minimize the power loss yet achieve a reliable startup in application. For AC/DC adaptor with universal input range design, a $2 \mathrm{M} \Omega, 1 / 8 \mathrm{~W}$ startup resistor could be used together with a VDD capacitor to provide a fast startup and yet low power dissipation design solution.

- Operating Current

The Operating current of OB2358 is low at 2 mA . Good efficiency is achieved with OB2358 low operating current together with the 'Extended burst mode' control features.

- Soft Start

OB2358 features an internal 4 ms soft start to soften the electrical stress occurring in the power supply during startup. It is activated during the power on sequence. As soon as VDD reaches UVLO(OFF), the peak current is gradually increased from nearly zero to the maximum level of 0.77 V . Every restart up is followed by a soft start.

- Frequency shuffling for EMI improvement

The frequency Shuffling (switching frequency modulation) is implemented in OB2358. The oscillation frequency is modulated so that the tone energy is spread out. The spread spectrum minimizes the conduction band EMI and therefore eases the system design.

- Extended Burst Mode Operation

At light load or zero load condition, most of the power dissipation in a switching mode power supply is from switching loss on the MOSFET, the core loss of the transformer and the loss on the snubber circuit. The magnitude of power loss is in proportion to the switching frequency. Lower switching frequency leads to the reduction on the power loss and thus conserves the energy.

The switching frequency is internally adjusted at no load or light load condition. The switch frequency reduces at light/no load condition to improve the conversion efficiency. At light load or no load condition, the FB input drops below burst mode threshold level and device enters Burst Mode control. The Gate drive output switches only when VDD voltage drops below a preset level and FB input is active to output an on state. Otherwise the gate drive remains at off state to minimize the switching loss and reduces the standby power consumption to the greatest extend.
The switching frequency control also eliminates the audio noise at any loading conditions.

- Oscillator Operation

The switching frequency of OB2358 is internally fixed at 50 KHZ . No external frequency setting components are required for PCB design simplification.

- Current Sensing and Leading Edge Blanking Cycle-by-Cycle current limiting is offered in OB2358 current mode PWM control. The switch current is detected by a sense resistor into the sense pin. An internal leading edge blanking circuit chops off the sensed voltage spike at initial internal power MOSFET on state due to snubber diode reverse recovery and surge gate current of internal power MOSFET so that the external RC filtering on sense input is no longer needed. The current limiting comparator is disabled and cannot turn off the internal power MOSFET during the blanking period. The PWM duty cycle is determined by the current sense input voltage and the FB input voltage.

- Internal Synchronized Slope Compensation

Built-in slope compensation circuit adds voltage ramp onto the current sense input voltage for PWM generation. This greatly improves the close loop stability at CCM and prevents the sub-harmonic oscillation and thus reduces the output ripple voltage.

- Drive

The internal power MOSFET in OB2358 is driven by a dedicated gate driver for power switch control. Too weak the gate drive strength results in higher conduction and switch loss of MOSFET while too strong gate drive results the compromise of EMI.

OB2358
Current Mode PWM Power Switch

A good tradeoff is achieved through the built-in totem pole gate design with right output strength and dead time control. The low idle loss and good EMI system design is easier to achieve with this dedicated control scheme.
In addition to the gate drive control scheme mentioned, the gate drive strength can also be adjusted externally by a resistor connected between VDD and VDDG, the falling edge of the Drain output can be well controlled. It provides great flexibility for system EMI design.

- Protection Controls

Good power supply system reliability is achieved with its rich protection features including Cycle-by-

Cycle current limiting (OCP), Over Load Protection (OLP) and over voltage clamp, Under Voltage Lockout on VDD (UVLO).
With On-Bright Proprietary technology, the OCP is line voltage compensated to achieve constant output power limit over the universal input voltage range.
At overload condition when FB input voltage exceeds power limit threshold value for more than TD_PL, control circuit reacts to shut down the switcher. Switcher restarts when VDD voltage drops below UVLO limit.
VDD is supplied by transformer auxiliary winding output. It is clamped when VDD is higher than 30 V . The output of OB2358 is shut down when VDD drops below UVLO_ON limit and Switcher enters power on start-up sequence thereafter.

PACKAGE MECHANICAL DATA

8-Pin Plastic DIP

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
A	3.710	4.310	0.146	0.170
A1	0.500		0.020	
A2	3.200	3.600	0.126	0.142
B	0.350	0.650	0.014	0.026
B1	$1.524($ BSC $)$		0.060 (BSC)	
C	0.204	0.360	0.008	0.014
D	9.000	9.500	0.354	0.374
E	6.200	6.600	0.244	0.260
E1	7.320	7.920	0.288	0.312
e	$2.540($ BSC $)$		$0.100(\mathrm{BSC})$	
L	3.000	3.600	0.118	0.142
E2	8.200	9.000	0.323	0.354

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Controllers category:
Click to view products by On-Bright manufacturer:

Other Similar products are found below :
LV5725JAZ-AH AP3844CMTR-E1 NCP1218AD65R2G NCP1234AD100R2G NCP1244BD065R2G NCP1336ADR2G NCP1587GDR2G NCP6153MNTWG NCP81101BMNTXG NCP81205MNTXG CAT874-80ULGT3 SJE6600 AZ7500BMTR-E1 IR35215MTRPBF SG3845DM NCP4204MNTXG NCP6132AMNR2G NCP81102MNTXG NCP81203MNTXG NCP81206MNTXG NX2155HCUPTR UBA2051C IR35201MTRPBF AP3842CMTR-E1 NCP1247AD065R2G NCP1015ST65T3G NCP1240AD065R2G NCP1240FD065R2G NCP1361BABAYSNT1G NCP1230P100G NCP1612BDR2G NX2124CSTR SG2845M NCP1366BABAYDR2G NCP81101MNTXG TEA19362T/1J NCP81174NMNTXG NCP4308DMTTWG NCP4308DMNTWG NCP4308AMTTWG NCP1366AABAYDR2G NCP1256ASN65T1G NCP1251FSN65T1G NCP1246BLD065R2G MB39A136PFT-G-BND-ERE1 NCP1256BSN100T1G LV5768V-A-TLM-E NCP1365BABCYDR2G NCP1365AABCYDR2G IR35204MTRPBF

