## 1N6267A Series

## 1500 Watt Mosorb ${ }^{\text {m }}$ Zener Transient Voltage Suppressors

## Unidirectional*

Mosorb devices are designed to protect voltage sensitive components from high voltage, high-energy transients. They have excellent clamping capability, high surge capability, low zener impedance and fast response time. These devices are ON Semiconductor's exclusive, cost-effective, highly reliable Surmetic ${ }^{\text {TM }}$ axial leaded package and are ideally-suited for use in communication systems, numerical controls, process controls, medical equipment, business machines, power supplies and many other industrial/consumer applications, to protect CMOS, MOS and Bipolar integrated circuits.

## Features

- Working Peak Reverse Voltage Range -5.8 V to 214 V
- Peak Power - 1500 Watts @ 1 ms
- ESD Rating of Class 3 ( $>16 \mathrm{kV}$ ) per Human Body Model
- Maximum Clamp Voltage @ Peak Pulse Current
- Low Leakage < $5 \mu \mathrm{~A}$ Above 10 V
- UL 497B for Isolated Loop Circuit Protection
- Response Time is Typically < 1 ns
- Pb-Free Packages are Available


## Mechanical Characteristics

CASE: Void-free, transfer-molded, thermosetting plastic FINISH: All external surfaces are corrosion resistant and leads are readily solderable
MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES:
$230^{\circ} \mathrm{C}, 1 / 16$ in from the case for 10 seconds
POLARITY: Cathode indicated by polarity band
MOUNTING POSITION: Any
 download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


## ON Semiconductor ${ }^{\circledR}$

http://onsemi.com


ORDERING INFORMATION

| Device | Package | Shipping ${ }^{\dagger}$ |
| :--- | :---: | :---: |
| 1.5KExxxA | Axial Lead | 500 Units/Box |
| 1.5KExxxAG | Axial Lead <br> (Pb-Free) | 500 Units/Box |
| 1.5KExxxARL4 | Axial Lead | 1500/Tape \& Reel |
| 1.5KExxxARL4G | Axial Lead <br> (Pb-Free) | $1500 /$ Tape \& Reel |
| 1N6xxxA | Axial Lead | 500 Units/Box |
| 1N6xxxAG | Axial Lead <br> (Pb-Free) | 500 Units/Box |
| 1N6xxxARL4 | Axial Lead | 1500/Tape \& Reel |
| 1N6xxxARL4G | Axial Lead <br> (Pb-Free) | 1500/Tape \& Reel |

$\dagger$ For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
Preferred devices are recommended choices for future use and best overall value.

MAXIMUM RATINGS

| Rating | Symbol | Value | Unit |
| :--- | :---: | :---: | :---: |
| Peak Power Dissipation (Note 1) @ $\mathrm{T}_{\mathrm{L}} \leq 25^{\circ} \mathrm{C}$ | $\mathrm{P}_{\mathrm{PK}}$ | 1500 | W |
| Steady State Power Dissipation <br> @ $\mathrm{T}_{\mathrm{L}} \leq 75^{\circ} \mathrm{C}$, Lead Length $=3 / 8$ in <br> Derated above $\mathrm{T}_{\mathrm{L}}=75^{\circ} \mathrm{C}$ | $\mathrm{P}_{\mathrm{D}}$ | 5.0 | W |
| Thermal Resistance, Junction-to-Lead |  | 20 | $\mathrm{~mW} /{ }^{\circ} \mathrm{C}$ |
| Forward Surge Current (Note 2) @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ | $\mathrm{R}_{\text {日JL }}$ | 20 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| Operating and Storage <br> Temperature Range | $\mathrm{T}_{\mathrm{J},}, \mathrm{T}_{\text {stg }}$ | -65 to +175 | ${ }^{\circ} \mathrm{C}$ |

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

1. Nonrepetitive current pulse per Figure 5 and derated above $T_{A}=25^{\circ} \mathrm{C}$ per Figure 2 .
2. $1 / 2$ sine wave (or equivalent square wave), $\mathrm{PW}=8.3 \mathrm{~ms}$, duty cycle $=4$ pulses per minute maximum.

NOTES: Please see 1.5KE6.8CA to 1.5KE250CA for Bidirectional Devices

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted, $\mathrm{V}_{\mathrm{F}}=3.5 \mathrm{~V}$ Max., $\mathrm{I}_{\mathrm{F}}($ Note 3$\left.)=100 \mathrm{~A}\right)$

| Symbol | Parameter |
| :---: | :--- |
| $\mathrm{I}_{\mathrm{PP}}$ | Maximum Reverse Peak Pulse Current |
| $\mathrm{V}_{\mathrm{C}}$ | Clamping Voltage @ IPP |
| $\mathrm{V}_{\mathrm{RWM}}$ | Working Peak Reverse Voltage |
| $\mathrm{I}_{\mathrm{R}}$ | Maximum Reverse Leakage Current @ $\mathrm{V}_{\mathrm{RWM}}$ |
| $\mathrm{V}_{\mathrm{BR}}$ | Breakdown Voltage @ $\mathrm{I}_{\mathrm{T}}$ |
| $\mathrm{I}_{\mathrm{T}}$ | Test Current |
| $\Theta \mathrm{V}_{\mathrm{BR}}$ | Maximum Temperature Coefficient of $\mathrm{V}_{\mathrm{BR}}$ |
| $\mathrm{I}_{\mathrm{F}}$ | Forward Current |
| $\mathrm{V}_{\mathrm{F}}$ | Forward Voltage @ $\mathrm{I}_{\mathrm{F}}$ |



ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted, $\mathrm{V}_{\mathrm{F}}=3.5 \mathrm{~V}$ Max. $@ \mathrm{I}_{\mathrm{F}}($ Note 3$\left.)=100 \mathrm{~A}\right)$

| Device ${ }^{\dagger}$ | JEDEC Device ${ }^{\dagger}$ (Note 4) |  | $\frac{\mathrm{I}_{\mathrm{R}} @ \mathrm{~V}_{\mathrm{RWM}}}{(\mu \mathrm{~A})}$ | Breakdown Voltage |  |  |  | $\mathbf{V}_{\mathbf{C}}$ @ $\mathrm{IPP}^{\text {(Note 7) }}$ |  | $\Theta \mathrm{V}_{\mathrm{BR}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\mathrm{V}_{\text {BR }}$ (Note 6) (Volts) |  |  | @ IT | $\mathrm{V}_{\mathrm{c}}$ | IPP |  |
|  |  |  |  | Min | Nom | Max | (mA) | (Volts) | (A) | (\%/ ${ }^{\circ} \mathrm{C}$ ) |
| 1.5KE6.8A, G | 1N6267A, G | 5.8 | 1000 | 6.45 | 6.8 | 7.14 | 10 | 10.5 | 143 | 0.057 |
| 1.5KE7.5A, G | 1N6268A, G | 6.4 | 500 | 7.13 | 7.5 | 7.88 | 10 | 11.3 | 132 | 0.061 |
| 1.5KE8.2A, G | 1N6269A, G | 7.02 | 200 | 7.79 | 8.2 | 8.61 | 10 | 12.1 | 124 | 0.065 |
| 1.5KE9.1A, G | 1N6270A, G | 7.78 | 50 | 8.65 | 9.1 | 9.55 | 1 | 13.4 | 112 | 0.068 |
| 1.5KE10A, G | 1N6271A, G | 8.55 | 10 | 9.5 | 10 | 10.5 | 1 | 14.5 | 103 | 0.073 |
| 1.5KE11A, G | 1N6272A, G | 9.4 | 5 | 10.5 | 11 | 11.6 | 1 | 15.6 | 96 | 0.075 |
| 1.5KE12A, G | 1N6273A, G | 10.2 | 5 | 11.4 | 12 | 12.6 | 1 | 16.7 | 90 | 0.078 |
| 1.5KE13A, G | 1N6274A, G | 11.1 | 5 | 12.4 | 13 | 13.7 | 1 | 18.2 | 82 | 0.081 |
| 1.5KE15A, G | 1N6275A, G | 12.8 | 5 | 14.3 | 15 | 15.8 | 1 | 21.2 | 71 | 0.084 |
| 1.5KE16A, G | 1N6276A, G | 13.6 | 5 | 15.2 | 16 | 16.8 | 1 | 22.5 | 67 | 0.086 |
| 1.5KE18A, G | 1N6277A, G | 15.3 | 5 | 17.1 | 18 | 18.9 | 1 | 25.2 | 59.5 | 0.088 |
| 1.5KE20A, G | 1N6278A, G | 17.1 | 5 | 19 | 20 | 21 | 1 | 27.7 | 54 | 0.09 |
| 1.5KE22A, G | 1N6279A, G | 18.8 | 5 | 20.9 | 22 | 23.1 | 1 | 30.6 | 49 | 0.092 |
| 1.5KE24A, G | 1N6280A, G | 20.5 | 5 | 22.8 | 24 | 25.2 | 1 | 33.2 | 45 | 0.094 |
| 1.5KE27A, G | 1N6281A, G | 23.1 | 5 | 25.7 | 27 | 28.4 | 1 | 37.5 | 40 | 0.096 |
| 1.5KE30A, G | 1N6282A, G | 25.6 | 5 | 28.5 | 30 | 31.5 | 1 | 41.4 | 36 | 0.097 |
| 1.5KE33A, G | 1N6283A, G | 28.2 | 5 | 31.4 | 33 | 34.7 | 1 | 45.7 | 33 | 0.098 |
| 1.5KE36A, G | 1N6284A, G | 30.8 | 5 | 34.2 | 36 | 37.8 | 1 | 49.9 | 30 | 0.099 |
| 1.5KE39A, G | 1N6285A, G | 33.3 | 5 | 37.1 | 39 | 41 | 1 | 53.9 | 28 | 0.1 |
| 1.5KE43A, G | 1N6286A, G | 36.8 | 5 | 40.9 | 43 | 45.2 | 1 | 59.3 | 25.3 | 0.101 |
| 1.5KE47A, G | 1N6287A, G | 40.2 | 5 | 44.7 | 47 | 49.4 | 1 | 64.8 | 23.2 | 0.101 |
| 1.5KE51A, G | 1N6288A, G | 43.6 | 5 | 48.5 | 51 | 53.6 | 1 | 70.1 | 21.4 | 0.102 |
| 1.5KE56A, G | 1N6289A, G | 47.8 | 5 | 53.2 | 56 | 58.8 | 1 | 77 | 19.5 | 0.103 |
| 1.5KE62A, G | 1N6290A, G | 53 | 5 | 58.9 | 62 | 65.1 | 1 | 85 | 17.7 | 0.104 |
| 1.5KE68A, G | 1N6291A, G | 58.1 | 5 | 64.6 | 68 | 71.4 | 1 | 92 | 16.3 | 0.104 |
| 1.5KE75A, G | 1N6292A, G | 64.1 | 5 | 71.3 | 75 | 78.8 | 1 | 103 | 14.6 | 0.105 |
| 1.5KE82A, G | 1N6293A, G | 70.1 | 5 | 77.9 | 82 | 86.1 | 1 | 113 | 13.3 | 0.105 |
| 1.5KE91A, G | 1N6294A, G | 77.8 | 5 | 86.5 | 91 | 95.5 | 1 | 125 | 12 | 0.106 |
| 1.5KE100A, G | 1N6295A, G | 85.5 | 5 | 95 | 100 | 105 | 1 | 137 | 11 | 0.106 |
| 1.5KE110A, G | 1N6296A, G | 94 | 5 | 105 | 110 | 116 | 1 | 152 | 9.9 | 0.107 |
| 1.5KE120A, G | 1N6297A, G | 102 | 5 | 114 | 120 | 126 | 1 | 165 | 9.1 | 0.107 |
| 1.5KE130A, G | 1N6298A, G | 111 | 5 | 124 | 130 | 137 | 1 | 179 | 8.4 | 0.107 |
| 1.5KE150A, G | 1N6299A, G | 128 | 5 | 143 | 150 | 158 | 1 | 207 | 7.2 | 0.108 |
| 1.5KE160A, G | 1N6300A, G | 136 | 5 | 152 | 160 | 168 | 1 | 219 | 6.8 | 0.108 |
| 1.5KE170A, G | 1N6301A, G | 145 | 5 | 162 | 170 | 179 | 1 | 234 | 6.4 | 0.108 |
| 1.5KE180A, G | 1N6302A, G* | 154 | 5 | 171 | 180 | 189 | 1 | 246 | 6.1 | 0.108 |
| 1.5KE200A, G | 1N6303A, G | 171 | 5 | 190 | 200 | 210 | 1 | 274 | 5.5 | 0.108 |
| 1.5KE220A, G |  | 185 | 5 | 209 | 220 | 231 | , | 328 | 4.6 | 0.109 |
| 1.5KE250A, G |  | 214 | 5 | 237 | 250 | 263 | 1 | 344 | 5 | 0.109 |

Devices listed in bold, italic are ON Semiconductor Preferred devices. Preferred devices are recommended choices for future use and best overall value.
3. $1 / 2$ sine wave (or equivalent square wave), $\mathrm{PW}=8.3 \mathrm{~ms}$, duty cycle $=4$ pulses per minute maximum.
4. Indicates JEDEC registered data
5. A transient suppressor is normally selected according to the maximum working peak reverse voltage $\left(\mathrm{V}_{\mathrm{RWM}}\right)$, which should be equal to or greater than the dc or continuous peak operating voltage level.
6. $\mathrm{V}_{\mathrm{BR}}$ measured at pulse test current $\mathrm{I}_{\mathrm{T}}$ at an ambient temperature of $25^{\circ} \mathrm{C}$
7. Surge current waveform per Figure 5 and derate per Figures 1 and 2.
$\dagger$ The " G " suffix indicates Pb -Free package available.
*Not Available in the 1500/Tape \& Reel


Figure 1. Pulse Rating Curve



Figure 2. Pulse Derating Curve

Figure 3. Capacitance versus Breakdown Voltage


Figure 4. Steady State Power Derating


Figure 5. Pulse Waveform


Figure 6. Dynamic Impedance


Figure 7. Typical Derating Factor for Duty Cycle

## APPLICATION NOTES

## RESPONSE TIME

In most applications, the transient suppressor device is placed in parallel with the equipment or component to be protected. In this situation, there is a time delay associated with the capacitance of the device and an overshoot condition associated with the inductance of the device and the inductance of the connection method. The capacitance effect is of minor importance in the parallel protection scheme because it only produces a time delay in the transition from the operating voltage to the clamp voltage as shown in Figure 8.

The inductive effects in the device are due to actual turn-on time (time required for the device to go from zero current to full current) and lead inductance. This inductive effect produces an overshoot in the voltage across the equipment or component being protected as shown in Figure 9. Minimizing this overshoot is very important in the
application, since the main purpose for adding a transient suppressor is to clamp voltage spikes. These devices have excellent response time, typically in the picosecond range and negligible inductance. However, external inductive effects could produce unacceptable overshoot. Proper circuit layout, minimum lead lengths and placing the suppressor device as close as possible to the equipment or components to be protected will minimize this overshoot.
Some input impedance represented by $\mathrm{Z}_{\mathrm{in}}$ is essential to prevent overstress of the protection device. This impedance should be as high as possible, without restricting the circuit operation.

## DUTY CYCLE DERATING

The data of Figure 1 applies for non-repetitive conditions and at a lead temperature of $25^{\circ} \mathrm{C}$. If the duty cycle increases, the peak power must be reduced as indicated by the curves of Figure 7. Average power must be derated as the lead or
ambient temperature rises above $25^{\circ} \mathrm{C}$. The average power derating curve normally given on data sheets may be normalized and used for this purpose.

At first glance the derating curves of Figure 7 appear to be in error as the 10 ms pulse has a higher derating factor than
the $10 \mu$ s pulse. However, when the derating factor for a given pulse of Figure 7 is multiplied by the peak power value of Figure 1 for the same pulse, the results follow the expected trend.

## TYPICAL PROTECTION CIRCUIT




Figure 8.


Figure 9.

## UL RECOGNITION*

The entire series has Underwriters Laboratory Recognition for the classification of protectors (QVGV2) under the UL standard for safety 497B and File \#116110. Many competitors only have one or two devices recognized or have recognition in a non-protective category. Some competitors have no recognition at all. With the UL497B recognition, our parts successfully passed several tests including Strike Voltage Breakdown test, Endurance

Conditioning, Temperature test, Dielectric VoltageWithstand test, Discharge test and several more.

Whereas, some competitors have only passed a flammability test for the package material, we have been recognized for much more to be included in their Protector category.
*Applies to $1.5 \mathrm{KE} 6.8 \mathrm{~A}, \mathrm{CA}$ thru $1.5 \mathrm{KE} 250 \mathrm{~A}, \mathrm{CA}$

## CLIPPER BIDIRECTIONAL DEVICES

1. Clipper-bidirectional devices are available in the 1.5KEXXA series and are designated with a "CA" suffix; for example, 1.5 KE 18 CA . Contact your nearest ON Semiconductor representative.
2. Clipper-bidirectional part numbers are tested in both directions to electrical parameters in preceding table (except for $\mathrm{V}_{\mathrm{F}}$ which does not apply).
3. The 1N6267A through 1N6303A series are JEDEC registered devices and the registration does not include a "CA" suffix. To order clipper-bidirectional devices one must add CA to the 1.5 KE device title.

## 1N6267A Series

## OUTLINE DIMENSIONS

MOSORB<br>CASE 41A-04<br>ISSUE D



NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH
3. LEAD FINISH AND DIAMETER UNCONTROLLED IN DIMENSION P
4. 041A-01 THRU 041A-03 OBSOLETE, NEW STANDARD 041A-04

| DIM | INCHES |  | MILLIMETERS |  |
| :---: | ---: | ---: | ---: | ---: |
|  | MIN | MAX | MIN | MAX |
|  | 0.335 | 0.374 | 8.50 | 9.50 |
| B | 0.189 | 0.209 | 4.80 | 5.30 |
| D | 0.038 | 0.042 | 0.96 | 1.06 |
| K | 1.000 | --- | 25.40 | --- |
| P | --- | 0.050 | --- | 1.27 |

Mosorb and Surmetic are trademarks of Semiconductor Components Industries, LLC.
ON Semiconductor and 10 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

## PUBLICATION ORDERING INFORMATION

## LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA

Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada
Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for ESD Suppressors / TVS Diodes category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
60KS200C D12V0H1U2WS-7 D18V0L1B2LP-7B 82356050220 D5V0M5U6V-7 NTE4902 P4KE27CA P6KE11CA P6KE39CA-TP P6KE8.2A SA110CA SA60CA SA64CA SMBJ12CATR SMBJ8.0A SMLJ30CA-TP ESD101-B1-02ELS E6327 ESD112-B1-02EL E6327 ESD119B1W01005E6327XTSA1 ESD5V0J4-TP ESD5V0L1B02VH6327XTSA1 ESD7451N2T5G 19180-510 CPDT-5V0USP-HF 3.0SMCJ33CA-F 3.0SMCJ36A-F HSPC16701B02TP D3V3Q1B2DLP3-7 D55V0M1B2WS-7 DESD5V0U1BL-7B DRTR5V0U4SL-7 SCM1293A-04SO ESD200-B1-CSP0201 E6327 ESD203-B1-02EL E6327 SM12-7 SMF8.0A-TP SMLJ45CA-TP CEN955 W/DATA 8235012056082356240030 VESD12A1A-HD1-GS08 CPDUR5V0R-HF CPDUR24V-HF CPDQC5V0U-HF CPDQC5V0USP-HF CPDQC5V0-HF D1213A-01LP4-7B D1213A-02WL-7 ESDLIN1524BJ-HQ 5KP100A

