## 1N59xxBRNG Series

## 3 W DO-41 Surmetic 30 Zener Voltage Regulators

This is a 1 N 59 xxBRNG series with limits and excellent operating characteristics that reflect the superior capabilities of silicon-oxide passivated junctions. All this in an axial-lead, transfer-molded plastic package that offers protection in all common environmental conditions.

## Features

- Zener Voltage Range - 3.3 V to 200 V
- ESD Rating of Class 3 ( $>16 \mathrm{KV}$ ) per Human Body Model
- Surge Rating of 98 W @ 1 ms
- Maximum Limits Guaranteed on up to Six Electrical Parameters
- Package No Larger than the Conventional 1 W Package
- This is a $\mathrm{Pb}-F r e e ~ D e v i c e ~$


## Mechanical Characteristics

CASE: Void free, transfer-molded, thermosetting plastic FINISH: All external surfaces are corrosion resistant and leads are readily solderable

## MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES:

$260^{\circ} \mathrm{C}, 1 / 16^{\prime \prime}$ from the case for 10 seconds
POLARITY: Cathode indicated by polarity band
MOUNTING POSITION: Any

## MAXIMUM RATINGS

$\left.\begin{array}{|c|c|c|c|}\hline \text { Rating } & \text { Symbol } & \text { Value } & \text { Unit } \\ \hline \begin{array}{c}\text { Max. Steady State Power Dissipation } \\ \text { @ } \mathrm{T}_{\mathrm{L}}=75^{\circ} \mathrm{C}, \text { Lead Length }=3 / 8^{\prime \prime}\end{array} & \mathrm{P}_{\mathrm{D}} & 3.0 & \mathrm{~W} \\ \text { Derate above } 75^{\circ} \mathrm{C}\end{array}\right)$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
$\dagger$ For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.
ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

MARKING DIAGRAM
A
= Assembly Location
1N59xxR
YY = Year
WW = Work Week

- = Pb-Free Package
(Note: Microdot may be in either location)


## ORDERING INFORMATION

| Device | Package | Shipping $^{\dagger}$ |
| :---: | :---: | :---: |
| 1N59xxBRNG | Axial Lead <br> (Pb-Free) | 3000 Units / Box |



| A | $=$ Assembly Location |
| :--- | :--- |
| N59xxR | $=$ Device Number |
| WY | $=$ Year |
| WW | Work Week |
|  | $=$ Pb-Free Package |

$\qquad$

[^0]
## 1N59xxBRNG Series

## ELECTRICAL CHARACTERISTICS

( $\mathrm{T}_{\mathrm{L}}=30^{\circ} \mathrm{C}$ unless otherwise noted,
$\mathrm{V}_{\mathrm{F}}=1.5 \mathrm{~V}$ Max @ $\mathrm{I}_{\mathrm{F}}=200 \mathrm{mAdc}$ for all types)

| Symbol | Parameter |
| :---: | :--- |
| $\mathrm{V}_{\mathrm{Z}}$ | Reverse Zener Voltage @ $\mathrm{I}_{\mathrm{ZT}}$ |
| $\mathrm{I}_{\mathrm{ZT}}$ | Reverse Current |
| $\mathrm{Z}_{\mathrm{ZT}}$ | Maximum Zener Impedance $@ \mathrm{I}_{\mathrm{ZT}}$ |
| $\mathrm{I}_{\mathrm{ZK}}$ | Reverse Current |
| $\mathrm{Z}_{\mathrm{ZK}}$ | Maximum Zener Impedance @ $\mathrm{I}_{\mathrm{ZK}}$ |
| $\mathrm{I}_{\mathrm{R}}$ | Reverse Leakage Current @ $\mathrm{V}_{\mathrm{R}}$ |
| $\mathrm{V}_{\mathrm{R}}$ | Breakdown Voltage |
| $\mathrm{I}_{\mathrm{F}}$ | Forward Current |
| $\mathrm{V}_{\mathrm{F}}$ | Forward Voltage @ $\mathrm{I}_{\mathrm{F}}$ |
| $\mathrm{I}_{\mathrm{ZM}}$ | Maximum DC Zener Current |

## 1N59xxBRNG Series

ELECTRICAL CHARACTERISTICS $\left(T_{L}=30^{\circ} \mathrm{C}\right.$ unless otherwise noted, $\mathrm{V}_{\mathrm{F}}=1.5 \mathrm{~V}$ Max $@ \mathrm{I}_{\mathrm{F}}=200 \mathrm{mAdc}$ for all types $)$

| Device ${ }^{\dagger}$ (Note 1) | Device Marking | Zener Voltage (Note 2) |  |  |  | Zener Impedance (Note 3) |  |  | Leakage Current$\mathrm{I}_{\mathrm{R}} @ \mathrm{~V}_{\mathrm{R}}$ |  | IzM |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{V}_{\mathrm{Z}}$ (Volts) |  |  | $\begin{gathered} @ \mathrm{I}_{\mathrm{ZT}} \\ \hline \mathrm{~mA} \end{gathered}$ | $\frac{\mathrm{z}_{\mathbf{Z T}} @ \mathrm{I}_{\mathrm{ZT}}}{\Omega}$ | $\mathrm{Z}_{\mathrm{zk}}$ @ $\mathrm{I}_{\text {zK }}$ |  |  |  |  |
|  |  | Min | Nom | Max |  |  | $\Omega$ | mA | $\mu \mathrm{A}$ Max | Volts | mA |
| 1N5929BRNG | 1N5929R | 14.25 | 15 | 15.75 | 25.0 | 9 | 600 | 0.25 | 1 | 11.4 | 100 |
| 1N5932BRNG | 1N5932R | 19.00 | 20 | 21.00 | 18.7 | 14 | 650 | 0.25 | 1 | 15.2 | 75 |
| 1N5934BRNG | 1N5934R | 22.80 | 24 | 25.20 | 15.6 | 19 | 700 | 0.25 | 1 | 18.2 | 62 |

$\dagger$ The "G" suffix indicates $\mathrm{Pb}-$ Free package available.

1. TOLERANCE AND TYPE NUMBER DESIGNATION

Tolerance designation - device tolerance of $\pm 5 \%$ are indicated by a "B" suffix.
2. ZENER VOLTAGE $\left(V_{Z}\right)$ MEASUREMENT

ON Semiconductor guarantees the zener voltage when measured at 90 seconds while maintaining the lead temperature $\left(T_{L}\right)$ at $30^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$, 3/8" from the diode body.
3. ZENER IMPEDANCE ( $Z_{z}$ ) DERIVATION

The zener impedance is derived from 60 seconds AC voltage, which results when an AC current having an rms value equal to $10 \%$ of the DC zener current ( $\mathrm{I}_{\mathrm{ZT}}$ or $\mathrm{I}_{\mathrm{ZK}}$ ) is superimposed on $\mathrm{I}_{\mathrm{ZT}}$ or $\mathrm{I}_{\mathrm{ZK}}$.


Figure 1. Power Temperature Derating Curve


Figure 2. Typical Thermal Response L, Lead Length = 3/8 Inch


Figure 3. Maximum Surge Power


Figure 4. Typical Reverse Leakage

## APPLICATION NOTE

Since the actual voltage available from a given zener diode is temperature dependent, it is necessary to determine junction temperature under any set of operating conditions in order to calculate its value. The following procedure is recommended:

Lead Temperature, $T_{L}$, should be determined from:

$$
T_{L}=\theta_{L A} P_{D}+T_{A}
$$

$\theta_{\text {LA }}$ is the lead-to-ambient thermal resistance $\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ and $P_{D}$ is the power dissipation. The value for $\theta_{L A}$ will vary and depends on the device mounting method. $\theta_{\text {LA }}$ is generally $30-40^{\circ} \mathrm{C} / \mathrm{W}$ for the various clips and tie points in common use and for printed circuit board wiring.

The temperature of the lead can also be measured using a thermocouple placed on the lead as close as possible to the tie point. The thermal mass connected to the tie point is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of $\mathrm{T}_{\mathrm{L}}$, the junction temperature may be determined by:

$$
\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{L}}+\Delta \mathrm{T}_{\mathrm{JL}}
$$

$\Delta \mathrm{T}_{\mathrm{JL}}$ is the increase in junction temperature above the lead temperature and may be found from Figure 2 for a train of power pulses ( $\mathrm{L}=3 / 8$ inch ) or from Figure 10 for dc power.

$$
\Delta \mathrm{T}_{\mathrm{JL}}=\theta_{\mathrm{JL}} \mathrm{P}_{\mathrm{D}}
$$

For worst-case design, using expected limits of $\mathrm{I}_{\mathrm{Z}}$, limits of $P_{D}$ and the extremes of $T_{J}\left(\Delta T_{J}\right)$ may be estimated. Changes in voltage, $\mathrm{V}_{\mathrm{Z}}$, can then be found from:

$$
\Delta \mathrm{V}=\theta_{\mathrm{VZ}} \Delta \mathrm{~T}_{\mathrm{J}}
$$

$\theta_{\mathrm{VZ}}$, the zener voltage temperature coefficient, is found from Figures 5 and 6.

Under high power-pulse operation, the zener voltage will vary with time and may also be affected significantly by the zener resistance. For best regulation, keep current excursions as low as possible.
Data of Figure 2 should not be used to compute surge capability. Surge limitations are given in Figure 3. They are lower than would be expected by considering only junction temperature, as current crowding effects cause temperatures to be extremely high in small spots resulting in device degradation should the limits of Figure 3 be exceeded.

## 1N59xxBRNG Series

TEMPERATURE COEFFICIENT RANGES
( $90 \%$ of the Units are in the Ranges Indicated)


Figure 5. Units To 12 Volts


Figure 6. Units 10 To 400 Volts

ZENER VOLTAGE versus ZENER CURRENT
(Figures 7, 8 and 9)


Figure 7. $\mathrm{V}_{\mathrm{Z}}=3.3$ thru 10 Volts


Figure 9. $\mathrm{V}_{\mathrm{Z}}=100$ thru 400 Volts


Figure 8. $\mathrm{V}_{\mathrm{Z}}=12$ thru 82 Volts


Figure 10. Typical Thermal Resistance

AXIAL LEAD
CASE 59AB ISSUE O

DATE 07 DEC 2011


NOTES:

1. CONTROLLING DIMENSION: INCHES.
2. PACKAGE CONTOUR IS OPTIONAL WITHIN DIMENSIONS A AND B. HEAT SLUGS, IF ANY, SHALL BE WITHIN DIMENSION B BUT NOT SUBJECT TO ITS MINIMUM VALUE.
3. DIMENSION A DEFINES THE ENTIRE BODY INCLUDING HEAT SLUGS.
4. DIMENSION B IS MEASURED AT THE MAXIMUM DIAMETER OF THE BODY.
5. POLARITY SHALL BE DENOTED BY A CATHODE BAND.
6. LEAD DIAMETER, D, IS NOT CONTROLLED IN ZONE F.
7. ALL RULES AND NOTES ASSOCIATED WITH JEDEC DO-41 OUTLINE SHALL APPLY

|  | INCHES |  | MILLIMETERS |  |
| :---: | :---: | :---: | :---: | :---: |
| DIM | MIN | MAX | MIN | MAX |
| A | 0.161 | 0.205 | 4.10 | 5.20 |
| B | 0.079 | 0.106 | 2.00 | 2.70 |
| D | 0.028 | 0.034 | 0.71 | 0.86 |
| F | --- | 0.050 | --- | 1.27 |
| K | 0.540 | --- | 13.70 | --- |

GENERIC MARKING DIAGRAM*

STYLE 1:
STYLE 2:
IN 1. CATHODE (POLARITY BAND) 2. ANODE


STYLE 1


| xxxxxxx | $=$ Specific Device Code |
| :--- | :--- |
| A | $=$ Assembly Location |
| YY | $=$ Year |
| WW | $=$ Work Week |

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present.

| DOCUMENT NUMBER: | 98AON66049E | Electronic versions are uncontrolled except when accessed directly from the Document Repository. <br> Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | AXIAL LEAD | PAGE 1 OF 1 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

## PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Zener Diodes category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
RKZ13B2KG\#P1 DL5234B EDZTE6113B 1N4682 1N4691 1N4693 1N4732A 1N4733A-TR 1N4736A 1N4750A 1N4759ARL 1N5241B
1N5365B 1N5369B 1N747A 1N959B 1N964B 1N966B 1N972B NTE149A NTE5116A NTE5121A NTE5147A NTE5152A NTE5155A
NTE5164A JANS1N4974US 1N4692 1N4700 1N4702 1N4704 1N4711 1N4714 1N4737A 1N4745ARL 1N4752A 1N4752ARL
1N4760ARL 1N5221B 1N5236B 1N5241BTR 1N5242BTR 1N5350B 1N5352B 1N961BRR1 1N964BRL RKZ5.1BKU\#P6
3SMAJ5950B-TP 3SMBJ5925B-TP TDZTR24


[^0]:    *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

