1SMF5920B

2.5 Watt Zener Diode in Flat Lead Package

This complete new line of 2.5 Watt Zener Diodes are offered in highly efficient micro miniature and space saving surface mount design. Because of its small size, it is ideal for use in cellular phones, portable devices, business machines and many other industrial/consumer applications.

Features

- Zener Breakdown Voltage: 6.2 V
- Low Leakage < 5 μA
- ESD Rating of Class 3 (> 16 kV) per Human Body Model
- Small Footprint Footprint Area of 8.45 mm²
- Low Profile Maximum Height of 1.0 mm
- Supplied in 8 mm Tape and Reel 3,000 Units per Reel
- Cathode Indicated by Polarity Band
- Lead Orientation in Tape: Cathode Lead to Sprocket Holes
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Mechanical Characteristics:

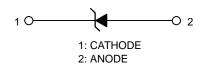
CASE: Void-free, transfer-molded, thermosetting plastic

Epoxy Meets UL 94 V-0

LEAD FINISH: 100% Matte Sn (Tin)

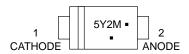
MOUNTING POSITION: Any

QUALIFIED MAX REFLOW TEMPERATURE: $260^{\circ}\mathrm{C}$


Device Meets MSL 1 Requirements

ON Semiconductor®

http://onsemi.com


PLASTIC SURFACE MOUNT 2.5 WATT ZENER DIODE 6.2 VOLTS

SOD-123FL CASE 498

MARKING DIAGRAM

5Y2 = Device Code M = Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

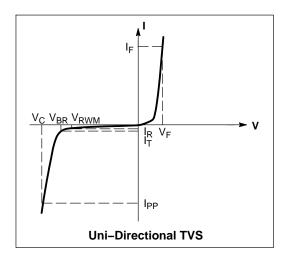
ORDERING INFORMATION

Device	Package	Shipping [†]
1SMF5920BT1G	SOD-123FL (Pb-Free)	3000/Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

1SMF5920B

MAXIMUM RATINGS


Rating	Symbol	Value	Unit
DC Power Dissipation @ T _A = 25°C (Note 1) Derate above 25°C Thermal Resistance, Junction–to–Ambient	P_{D} $R_{ heta JA}$	350 2.9 350	mW mW/°C °C/W
Thermal Resistance, Junction-to-Lead	$R_{ hetaJL}$	30	°C/W
Maximum DC Power Dissipation (Notes 1 and 2)	P_{D}	2.5	W
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C

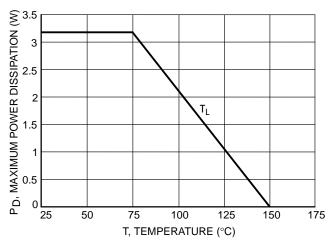
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Mounted with recommended minimum pad size, PC board FR-4.
- 2. At lead temperature 75°C

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted, $V_F = 1.5$ V Max. @ $I_F = 200$ mA for all

Symbol	bol Parameter			
I _{PP}	Maximum Reverse Peak Pulse Current			
V _C Clamping Voltage @ I _{PP}				
V _{RWM} Working Peak Reverse Voltage				
I _R	Maximum Reverse Leakage Current @ V _{RWM}			
V _{BR}	Breakdown Voltage @ I _T			
I _T	Test Current			
I _F	Forward Current			
V _F	Forward Voltage @ I _F			

ELECTRICAL CHARACTERISTICS (T_L = 30°C unless otherwise noted, V_F = 1.25 Volts @ 200 mA)


		Zener Voltage (Note 3)					Z _{ZT} @ I _{ZT}	Z _{ZK} @ I _{ZK}		
	Device	V _Z @ I _{ZT} (Volts)		I _{ZT}	I _R @ V _R	V_R	(Note 4)	(Note 4)	I _{ZK}	
Device	Marking	Min	Nom	Max	(mA)	(μΑ)	(V)	(Ω)	(Ω)	(mA)
1SMF5920BT1G	5Y2	5.89	6.2	6.51	60.5	5.0	4.0	2.0	200	1.0

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

- Zener voltage is measured with the device junction in thermal equilibrium with an ambient temperature of 25°C.
 Zener Impedance Derivation Z_{ZT} and Z_{ZK} are measured by dividing the AC voltage drop across the device by the AC current applied. The specified limits are for I_Z(ac) = 0.1 I_Z(dc) with the ac frequency = 60 Hz.

1SMF5920B

TYPICAL CHARACTERISTICS

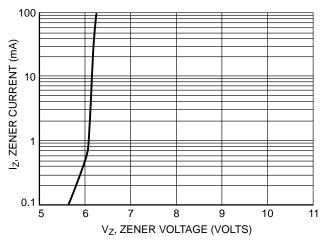
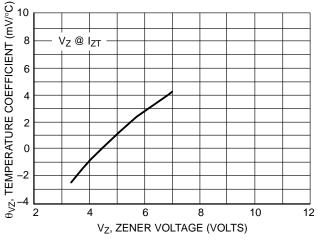



Figure 1. Steady State Power Derating

Figure 2. V_Z

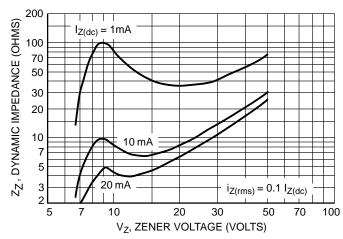
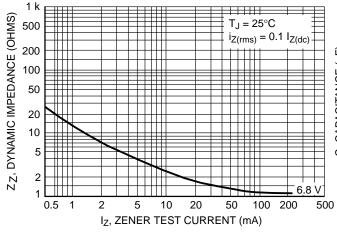
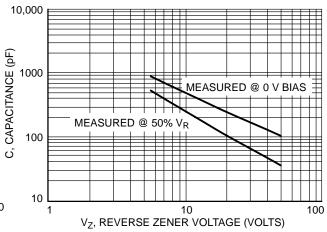
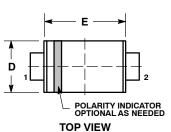
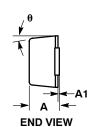



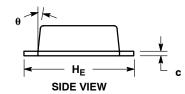
Figure 3. Zener Voltage

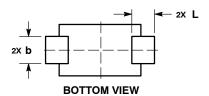
Figure 4. Effect of Zener Voltage



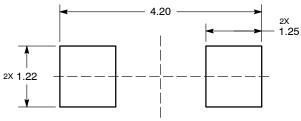

Figure 5. Effect of Zener Current


Figure 6. Capacitance versus Reverse Zener Voltage




SOD-123FL **CASE 498** ISSUE D

DATE 10 MAY 2013



RECOMMENDED SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

NOTES:

- ES:
 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH.
 DIMENSIONS D AND J ARE TO BE MEASURED ON FLAT SECTION
 OF THE LEAD: BETWEEN 0.10 AND 0.25 MM FROM THE LEAD TIP.

	М	ILLIMETE	RS	INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.90	0.95	0.98	0.035	0.037	0.039	
A1	0.00	0.05	0.10	0.000	0.002	0.004	
b	0.70	0.90	1.10	0.028	0.035	0.043	
С	0.10	0.15	0.20	0.004	0.006	0.008	
D	1.50	1.65	1.80	0.059	0.065	0.071	
E	2.50	2.70	2.90	0.098	0.106	0.114	
L	0.55	0.75	0.95	0.022	0.030	0.037	
HE	3.40	3.60	3.80	0.134	0.142	0.150	
θ	0°	-	8°	0°	-	8°	

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code

= Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98AON11184D	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOD-123FL		PAGE 1 OF 1		

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Zener Diodes category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

RKZ13B2KG#P1 DL5234B EDZTE6113B 1N4682 1N4691 1N4693 1N4732A 1N4733A-TR 1N4736A 1N4750A 1N4759ARL 1N5241B 1N5365B 1N5369B 1N747A 1N959B 1N964B 1N966B 1N972B NTE149A NTE5116A NTE5121A NTE5147A NTE5152A NTE5155A NTE5164A JANS1N4974US 1N4692 1N4700 1N4702 1N4704 1N4711 1N4714 1N4737A 1N4745ARL 1N4752A 1N4752ARL 1N4760ARL 1N5221B 1N5236B 1N5241BTR 1N5242BTR 1N5350B 1N5352B 1N961BRR1 1N964BRL RKZ5.1BKU#P6 3SMAJ5950B-TP 3SMBJ5925B-TP TDZTR24