

NPN General Purpose Amplifier

This device is designed for use as general purpose amplifiers and switches requiring collector currents to 300 mA ．Sourced from Process 10．See PN100A for characteristics．

Absolute Maximum Ratings＊

$\mathrm{TA}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Value	Units
$\mathrm{V}_{\text {CEO }}$	Collector－Emitter Voltage	25	V
$\mathrm{~V}_{\text {CBO }}$	Collector－Base Voltage	25	V
$\mathrm{~V}_{\text {EBO }}$	Emitter－Base Voltage	5.0	V
I_{C}	Collector Current－Continuous	500	mA
$\mathrm{~T}_{\mathrm{J}}, \mathrm{T}_{\mathrm{Stg}}$	Operating and Storage Junction Temperature Range	-55 to +150	${ }^{\circ} \mathrm{C}$

＊These ratings are limiting values above which the serviceability of any semiconductor device may be impaired．
NOTES：
1）These ratings are based on a maximum junction temperature of 150 degrees C
2）These are steady state limits．The factory should be consulted on applications involving pulsed or low duty cycle operations．

Thermal Characteristics
$\mathrm{TA}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Characteristic	Max	Units
P_{D}	Total Device Dissipation	625	mW
	Derate above $25^{\circ} \mathrm{C}$	5.0	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\text {өJC }}$	Thermal Resistance，Junction to Case	83.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJA }}$	Thermal Resistance，Junction to Ambient	200	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Electrical Characteristics $\quad T A=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Max	Units

OFF CHARACTERISTICS

$\mathrm{V}_{\text {(BR)CEO }}$	Collector-Emitter Breakdown Voltage *	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$	25	V	
$\mathrm{~V}_{(\text {BR })} \mathrm{CBO}$	Collector-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$	25		V
$\mathrm{~V}_{\text {(BR)EBO }}$	Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{I}, \mathrm{I}_{\mathrm{C}}=0$	5.0		V
$\mathrm{I}_{\text {CBO }}$	Collector-Cutoff Current	$\mathrm{V}_{\mathrm{CB}}=18 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$		100	nA
$\mathrm{I}_{\text {EBO }}$	Emitter-Cutoff Current	$\mathrm{V}_{\mathrm{EB}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0$		100	nA

ON CHARACTERISTICS*

h_{FE}	DC Current Gain	$\mathrm{V}_{\mathrm{CE}}=4.5 \mathrm{~V}, \mathrm{IC}=2.0 \mathrm{~mA}$			
		2N3390	400	800	
		2N3391/A	250	500	
		2N3392	150	300	
		2N3393	90	180	

SMALL SIGNAL CHARACTERISTICS

$\mathrm{C}_{\text {ob }}$	Output Capacitance	$\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$	2.0	10	pF
$\mathrm{hf}_{\text {fe }}$	Small-Signal Current Gain	$\mathrm{I} \mathrm{C}=2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=4.5 \mathrm{~V}$, $\mathrm{f}=1.0 \mathrm{kHz}$ 2N3390 2N3391/A 2N3392 2N3393	$\begin{gathered} 400 \\ 250 \\ 150 \\ 90 \\ \hline \end{gathered}$	$\begin{array}{r} 1250 \\ 800 \\ 500 \\ 400 \\ \hline \end{array}$	
NF	Noise Figure	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \\ & \mathrm{R}_{\mathrm{G}}=500 \Omega \Omega, \quad 2 \mathrm{~N} 3391 \mathrm{~A} \text { only } \\ & \mathrm{B}_{\mathrm{W}}=15.7 \mathrm{kHz} \\ & \hline \end{aligned}$		5.0	dB

*Pulse Test: Pulse Width $\leq 300 \mu \mathrm{~s}$, Duty Cycle $\leq 2.0 \%$

TO-92 Tape and Reel Data

TO-92 Packaging

Configuration: Figure 1.0
TO-92 TNR/AMMO PACKING INFROMATION

Packing	Style	Quantity	EOL code		
Reel	A	2,000	D26Z		
	E	2,000	D27Z		
Ammo	M	2,000	D $74 Z$		
	P	2,000	D75Z		Unit weight
:---					
Reel weight with components Ammo weight with components Max quantity per intermediate box $=1.22 \mathrm{gm}$ $=1.04 \mathrm{~kg}$ $=10,000$ kg units					

(TO-92) BULK PACKING INFORMATION

$\begin{aligned} & \hline \text { EOL } \\ & \text { CODE } \\ & \hline \end{aligned}$	DESCRIPTION	LEADCLIP DIMENSION	QUANTITY
J182	TO-18 OPTION STD	NO LEAD CLIP	2.0 K/BOX
J05z	TO-5 OPTION STD	NO LEAD CLIP	$1.5 \mathrm{~K} / \mathrm{BOX}$
NO EOL	TO-92 STANDARD STRAIGHT FOR: PKG 92, 94 (NON PROELECTRON SERIES), 96	NO LEADCLIP	2.0 K / BOX
L342	TO-92 STANDARD STRAIGHT FOR: PKG 94 (PROELECTRON SERIES BCXXX, BFXXX, BSRXXX), 97, 98	NO LEADCLIP	2.0 K / BOX

BULK OPTION
See Bulk Packing
Information table

TO-92 Tape and Reel Data, continued

TO-92 Reeling Style

Configuration: Figure 2.0

Style "A", D26Z, D70Z (s/h)

TO-92 Radial Ammo Packaging

Configuration: Figure 3.0

Style "E", D27Z, D71Z (s/h)

TO-92 Tape and Reel Data, continued

TO-92 Tape and Reel Taping

Dimension Configuration: Figure 4.0

TO－92 Package Dimensions
 FAIRCHILD

SEMICロNロレСTロR

TO－92（FS PKG Code 92，94，96）

Scale 1：1 on letter size paper Dimensions shown below are in： inches［millimeters］
Part Weight per unit（gram）： 0.1977

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx ${ }^{\text {TM }}$	FASTr ${ }^{\text {TM }}$	PowerTrench ${ }^{\text {® }}$	SyncFET ${ }^{\text {TM }}$
Bottomless ${ }^{\text {TM }}$	GlobalOptoisolator ${ }^{\text {TM }}$	QFET ${ }^{\text {TM }}$	TinyLogic ${ }^{\text {TM }}$
Coolfet ${ }^{\text {TM }}$	GTO $^{\text {™ }}$	QS ${ }^{\text {TM }}$	UHC'M
CROSSVOLT ${ }^{\text {TM }}$	HiSeCm	QT Optoelectronics ${ }^{\text {TM }}$	VCX ${ }^{\text {TM }}$
DOME ${ }^{\text {™ }}$	ISOPLANAR ${ }^{\text {TM }}$	Quiet Series ${ }^{\text {™ }}$	
$\mathrm{E}^{2} \mathrm{CMOS}^{\text {TM }}$	MICROWIRE ${ }^{\text {TM }}$	SILENT SWITCHER ${ }^{\circledR}$	
EnSigna ${ }^{\text {TM }}$	OPTOLOGIC ${ }^{\text {TM }}$	SMART START ${ }^{\text {TM }}$	
FACT ${ }^{\text {m }}$	OPTOPLANAR ${ }^{\text {TM }}$	SuperSOTTM-3	
FACT Quiet Series ${ }^{\text {TM }}$	PACMAN ${ }^{\text {TM }}$	SuperSOT™-6	
FAST ${ }^{\text {® }}$	POP ${ }^{\text {TM }}$	SuperSOT™-8	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUTTHE EXPRESS WRITTENAPPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bipolar Transistors - BJT category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
619691C MCH4017-TL-H MJ15024/WS MJ15025/WS BC546/116 BC556/FSC BC557/116 BSW67A HN7G01FU-A(T5L,F,T NJVMJD148T4G NSVMMBT6520LT1G NTE187A NTE195A NTE2302 NTE2330 NTE2353 NTE316 IMX9T110 NTE63 NTE65 C4460 SBC846BLT3G 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA1727TLP 2SA2126-E 2SB1202T-TL-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMC5AT148 2N2369ADCSM 2SB1202S-TL-E 2SC2412KT146S 2SC4618TLN 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E BC557B TTC012(Q) BULD128DT4 JANTX2N3810 Jantx2N5416 US6T6TR KSF350 068071B

