2N3906

General Purpose Transistors

PNP Silicon

Features

- $\mathrm{Pb}-$ Free Packages are Available*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector - Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	40	Vdc
Collector - Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	40	Vdc
Emitter - Base Voltage	$\mathrm{V}_{\text {EBO }}$	5.0	Vdc
Collector Current - Continuous	I_{C}	200	mAdc
Total Device Dissipation $@ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	625	mW
$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$			
Total Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=60^{\circ} \mathrm{C}$	P_{D}	250	mW
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	1.5	W $\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Operating and Storage Junction Temperature Range	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS (Note 1)

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient	$\mathrm{R}_{\text {өJA }}$	200	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance, Junction-to-Case	$\mathrm{R}_{\text {өJC }}$	83.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Indicates Data in addition to JEDEC Requirements.
[^0]ON Semiconductor ${ }^{\circledR}$

http://onsemi.com

TO-92
CASE 29
STYLE 1

MARKING DIAGRAM

A	$=$ Assembly Location
L	$=$ Wafer Lot
Y	$=$ Year
W	$=$ Work Week
-	$=$ Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage (Note 2)	$\left(\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{\text {(BR) }}$ CEO	40	-	Vdc
Collector-Base Breakdown Voltage	$\left(\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{Adc}, \mathrm{I}_{\mathrm{E}}=0\right.$)	$\mathrm{V}_{\text {(BR) }} \mathrm{VBO}$	40	-	Vdc
Emitter-Base Breakdown Voltage	$\left(\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{Adc}, \mathrm{I}_{\mathrm{C}}=0\right)$	$\mathrm{V}_{\text {(BR) }{ }^{\text {ebo }}}$	5.0	-	Vdc
Base Cutoff Current	$\left(\mathrm{V}_{\text {CE }}=30 \mathrm{Vdc}, \mathrm{V}_{\text {EB }}=3.0 \mathrm{Vdc}\right)$	I_{BL}	-	50	nAdc
Collector Cutoff Current	$\left(\mathrm{V}_{\text {CE }}=30 \mathrm{Vdc}, \mathrm{V}_{\text {EB }}=3.0 \mathrm{Vdc}\right)$	$I_{\text {CEX }}$	-	50	nAdc

ON CHARACTERISTICS (Note 2)

DC Current Gain	$\begin{gathered} \left(\mathrm{I}_{\mathrm{C}}=0.1 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=1.0 \mathrm{Vdc}\right) \\ \left(\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=1.0 \mathrm{Vdc}\right) \\ \left(\mathrm{I} \mathrm{C}=10 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=1.0 \mathrm{Vdc}\right) \\ \left(\mathrm{I}_{\mathrm{C}}=50 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=1.0 \mathrm{Vdc}\right) \\ \left(\mathrm{I}_{\mathrm{C}}=100 \mathrm{mAc}, \mathrm{~V}_{\mathrm{CE}}=1.0 \mathrm{Vdc}\right) \end{gathered}$	$\mathrm{h}_{\text {FE }}$	$\begin{gathered} 60 \\ 80 \\ 100 \\ 60 \\ 30 \end{gathered}$	$\begin{gathered} - \\ - \\ 300 \\ - \\ - \end{gathered}$	-
Collector-Emitter Saturation Voltage	$\begin{aligned} & \left(\mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=1.0 \mathrm{mAdc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=50 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=5.0 \mathrm{mAdc}\right. \end{aligned}$	$\mathrm{V}_{\text {CE(sat) }}$	-	$\begin{gathered} 0.25 \\ 0.4 \end{gathered}$	Vdc
Base-Emitter Saturation Voltage	($\mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=1.0 \mathrm{mAdc}$) $\left(I_{C}=50 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=5.0 \mathrm{mAdc}\right)$	$V_{B E \text { (sat) }}$	0.65	$\begin{aligned} & 0.85 \\ & 0.95 \end{aligned}$	Vdc

SMALL-SIGNAL CHARACTERISTICS

Current-Gain - Bandwidth Product	$\left(\mathrm{l}_{\mathrm{C}}=10 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=20 \mathrm{Vdc}, \mathrm{f}=100 \mathrm{MHz}\right.$)	f_{T}	250	-	MHz
Output Capacitance	$\left(\mathrm{V}_{C B}=5.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	Cobo	-	4.5	pF
Input Capacitance	$\left(\mathrm{V}_{\text {EB }}=0.5 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {ibo }}$	-	10	pF
Input Impedance	$\left(\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{mAdc}, \mathrm{V}_{\text {CE }}=10 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{kHz}\right.$)	$\mathrm{h}_{\text {ie }}$	2.0	12	$\mathrm{k} \Omega$
Voltage Feedback Ratio	$\left(\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{kHz}\right.$)	h_{re}	0.1	10	X 10^{-4}
Small-Signal Current Gain	$\left(\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{kHz}\right.$)	h_{fe}	100	400	-
Output Admittance	($\mathrm{IC}_{\mathrm{C}}=1.0 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{kHz}$)	$\mathrm{h}_{\text {oe }}$	3.0	60	$\mu \mathrm{mhos}$
Noise Figure ($\mathrm{IC}_{\mathrm{C}}=1$	$\mathrm{dc}, \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}, \mathrm{R}_{\mathrm{S}}=1.0 \mathrm{k} \Omega, \mathrm{f}=1.0 \mathrm{kHz}$)	NF	-	4.0	dB

SWITCHING CHARACTERISTICS

Delay Time	$\left(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{Vdc}, \mathrm{V}_{\mathrm{BE}}=0.5 \mathrm{Vdc}\right.$, $\left.\mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B} 1}=1.0 \mathrm{mAdc}\right)$	t_{d}	-	35	ns
Rise Time		t_{r}	-	35	ns
Storage Time	$\left(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B} 1}=\mathrm{I}_{\mathrm{B} 2}=1.0 \mathrm{mAdc}\right)$	$\mathrm{t}_{\text {s }}$	-	225	ns
Fall Time	$\left(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B} 1}=\mathrm{I}_{\mathrm{B} 2}=1.0 \mathrm{mAdc}\right)$	t_{f}	-	75	ns

2. Pulse Test: Pulse Width $\leq 300 \mu \mathrm{~s}$; Duty Cycle $\leq 2 \%$.

2N3906

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
2N3906	TO-92	5000 Units / Bulk
2N3906G	$\begin{gathered} \text { TO-92 } \\ \text { (Pb-Free) } \end{gathered}$	5000 Units / Bulk
2N3906RL1	TO-92	2000 / Tape \& Reel
2N3906RL1G	$\begin{gathered} \text { TO-92 } \\ \text { (Pb-Free) } \end{gathered}$	2000 / Tape \& Reel
2N3906RLRA	TO-92	2000 / Tape \& Reel
2N3906RLRAG	$\begin{gathered} \text { TO-92 } \\ \text { (Pb-Free) } \end{gathered}$	2000 / Tape \& Reel
2N3906RLRM	TO-92	2000 / Tape \& Ammo Box
2N3906RLRMG	$\begin{gathered} \text { TO-92 } \\ \text { (Pb-Free) } \end{gathered}$	2000 / Tape \& Ammo Box
2N3906RLRP	TO-92	2000 / Tape \& Ammo Box
2N3906RLRPG	$\begin{gathered} \text { TO-92 } \\ \text { (Pb-Free) } \end{gathered}$	2000 / Tape \& Ammo Box

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

* Total shunt capacitance of test jig and connectors

Figure 1. Delay and Rise Time Equivalent Test Circuit

Figure 2. Storage and Fall Time Equivalent Test Circuit

TYPICAL TRANSIENT CHARACTERISTICS

Figure 3. Capacitance

Figure 5. Turn-On Time

Figure 6. Fall Time

TYPICAL AUDIO SMALL-SIGNAL CHARACTERISTICS NOISE FIGURE VARIATIONS
$\left(\mathrm{V}_{\mathrm{CE}}=-5.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, Bandwidth $\left.=1.0 \mathrm{~Hz}\right)$

Figure 7.

Figure 8.
h PARAMETERS
$\left(\mathrm{V}_{\mathrm{CE}}=-10 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Figure 9. Current Gain

Figure 11. Input Impedance

Figure 10. Output Admittance

Figure 12. Voltage Feedback Ratio

TYPICAL STATIC CHARACTERISTICS

Figure 13. DC Current Gain

Figure 14. Collector Saturation Region

Figure 15. "ON" Voltages

Figure 16. Temperature Coefficients

STRAIGHT LEAD BULK PACK

BENT LEAD TAPE \& REEL AMMO PACK

 BULK PACK

BENT LEAD TAPE \& REEL AMMO PACK

TO-92 (TO-226)
CASE 29-11
ISSUE AM
DATE 09 MAR 2007

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
CONTROLLING DIMENSION: INCH
2. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.
3. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.175	0.205	4.45	5.20
B	0.170	0.210	4.32	5.33
C	0.125	0.165	3.18	4.19
D	0.016	0.021	0.407	0.533
G	0.045	0.055	1.15	1.39
H	0.095	0.105	2.42	2.66
J	0.015	0.020	0.39	0.50
K	0.500	---	12.70	---
L	0.250	---	6.35	---
N	0.080	0.105	2.04	2.66
P	---	0.100	---	2.54
R	0.115	---	2.93	---
V	0.135	---	3.43	---

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS
3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED. . LEAD DIMENSION IS UNCONTROLLED I

	MILLIMETERS	
DIM	MIN	MAX
A	4.45	5.20
B	4.32	5.33
C	3.18	4.19
D	0.40	0.54
G	2.40	2.80
J	0.39	0.50
K	12.70	---
N	2.04	2.66
P	1.50	4.00
R	2.93	---
V	3.43	---

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42022B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
STATUS:	ON SEMICONDUCTOR STANDARD		
NEW STANDARD:			PAGE 1 OF 3

STYLE 1: PIN 1.	EMITTER	STYLE 2: PIN 1.	BASE	STYLE 3: PIN 1.	ANODE	STYLE 4: PIN 1.	CATHODE	STYLE 5: PIN 1.	DRAIN
2.	BASE	2.	EMITTER		ANODE	2.	CATHODE	2.	SOURCE
3.	COLLECTOR	3.	COLLECTOR	3.	CATHODE	3.	ANODE	3.	GATE
STYLE 6:		STYLE 7:		STYLE 8:		STYLE 9:		STYLE 10:	
PIN 1.	GATE	PIN 1.	SOURCE	PIN 1.	DRAIN	PIN 1.	BASE 1	PIN 1.	CATHODE
2.	SOURCE \& SUBSTRATE	2.	DRAIN	2.	GATE	2.	EMITTER	2.	GATE
3.	DRAIN	3.	GATE	3.	SOURCE \& SUBSTRATE	3.	BASE 2	3.	ANODE
STYLE 11:		STYLE 12:		STYLE 13:		STYLE 14:		STYLE 15:	
PIN 1.	ANODE	PIN 1.	MAIN TERMINAL 1	PIN 1.	ANODE 1	PIN 1.	EMITTER	PIN 1.	ANODE 1
2.	CATHODE \& ANODE	2.	GATE	2.	GATE	2.	COLLECTOR	2.	CATHODE
3.	CATHODE	3.	MAIN TERMINAL 2	3.	CATHODE 2	3.	BASE	3.	ANODE 2
STYLE 16:		STYLE 17:		STYLE 18:		STYLE 19:		STYLE 20:	
PIN 1.	ANODE	PIN 1.	COLLECTOR	PIN 1.	ANODE	PIN 1.	GATE	PIN 1.	NOT CONNECTED
2.	GATE	2.	BASE	2.	CATHODE	2.	ANODE	2.	CATHODE
3.	CATHODE	3.	EMITTER	3.	NOT CONNECTED	3.	CATHODE	3.	ANODE
STYLE 21:		STYLE 22:		STYLE 23:		STYLE 24:		STYLE 25:	
PIN 1.	COLLECTOR	PIN 1.	SOURCE	PIN 1.	GATE	PIN 1.	EMITTER	PIN 1.	MT 1
	EMITTER	2.	GATE	2.	SOURCE	2.	COLLECTOR/ANODE	2.	GATE
	BASE	3.	DRAIN	3.	DRAIN	3.	CATHODE	3.	MT 2
STYLE 26:		STYLE 27:		STYLE 28:		STYLE 29:		STYLE 30:	
PIN 1.	$V_{C C}$	PIN 1.	MT	PIN 1.	CATHODE	PIN 1.	NOT CONNECTED	PIN 1.	DRAIN
2.	GROUND 2	2.	SUBSTRATE	2.	ANODE	2.	ANODE	2.	GATE
	OUTPUT	3.	MT	3.	GATE	3.	CATHODE	3.	SOURCE
STYLE 31:		STYLE 32:		STYLE 33:		STYLE 34:		STYLE 35:	
PIN 1.	GATE	PIN 1.	BASE	PIN 1.	RETURN	PIN 1.	INPUT	PIN 1.	GATE
2.	DRAIN	2.	COLLECTOR	2.	INPUT	2.	GROUND	2.	COLLECTOR
3.	SOURCE	3.	EMITTER	3.	OUTPUT	3.	LOGIC	3.	EMITTER

DOCUMENT NUMBER:	98ASB42022B
STATUS:	ON SEMICONDUCTOR STANDARD
NEW STANDARD:	
DESCRIPTION:	TO-92 (TO-226)

Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

ON Semiconductor and (ON) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
onsemi, OnSemi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1800-282-9855 Toll Free USA/Canada
Phone: 011421337902910

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bipolar Transistors - BJT category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMMTA92QTA 2N2369ADCSM 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E US6T6TR 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E UMX21NTR EMT2T2R MCH6102-TL-E FP204-TL-E NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G NTE101 NTE13 NTE15 NTE16001

[^0]: *For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

