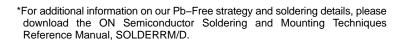
Silicon PNP Power Transistors

These devices are designed for use in power amplifier and switching circuits: excellent safe area limits.

Features

- Complement to NPN 2N5191, 2N5192
- These Devices are Pb-Free and are RoHS Compliant*

MAXIMUM RATINGS (Note 1)

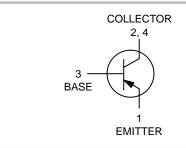

Rating	Symbol	Value	Unit
Collector–Emitter Voltage 2N5194G 2N5195G	V _{CEO}	60 80	Vdc
Collector–Base Voltage 2N5194G 2N5195G	V _{CB}	60 80	Vdc
Emitter-Base Voltage	V _{EB}	5.0	Vdc
Collector Current	I _C	4.0	Adc
Base Current	I _B	1.0	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	40 320	W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +150	°C/W

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

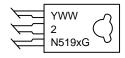
1. Indicates JEDEC registered data.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{ heta JC}$	3.12	°C/W



ON Semiconductor®


http://onsemi.com

4 AMPERE POWER TRANSISTORS PNP SILICON 60 – 80 VOLTS

MARKING DIAGRAM

Y = Year

WW = Work Week

2N519x = Device Code

x = 4 or 5

G = Pb-Free Package

ORDERING INFORMATION

_		_
Device	Package	Shipping
2N5194G	TO-225 (Pb-Free)	500 Units / Bulk
2N5195G	TO-225 (Pb-Free)	500 Units / Bulk

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted) (Note 2)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS	•	•	•	•
Collector–Emitter Sustaining Voltage (Note 3) (I _C = 0.1 Adc, I _B = 0) 2N5194G 2N5195G	V _{CEO(sus)}	60 80		Vdc
Collector Cutoff Current $(V_{CE} = 60 \text{ Vdc}, I_B = 0)$ 2N5194G $(V_{CE} = 80 \text{ Vdc}, I_B = 0)$ 2N5195G	I _{CEO}	-	1.0 1.0	mAdc
Collector Cutoff Current	ICEX		-0.1 0.1 2.0 2.0	mAdc
Collector Cutoff Current $(V_{CB} = 60 \text{ Vdc}, I_E = 0)$ $2N5194G$ $(V_{CB} = 80 \text{ Vdc}, I_E = 0)$ 2N5195G	I _{CBO}	-	0.1 0.1	mAdc
Emitter Cutoff Current (V _{BE} = 5.0 Vdc, I _C = 0)	I _{EBO}	-	1.0	mAdc
ON CHARACTERISTICS	•	•	•	•
DC Current Gain (Note 3) ($I_C = 1.5$ Adc, $V_{CE} = 2.0$ Vdc) 2N5194G 2N5195G ($I_C = 4.0$ Adc, $V_{CE} = 2.0$ Vdc) 2N5194G 2N5195G	h _{FE}	25 20 10 7.0	100 80 - -	_
Collector–Emitter Saturation Voltage (Note 3) ($I_C = 1.5 \text{ Adc}$, $I_B = 0.15 \text{ Adc}$) ($I_C = 4.0 \text{ Adc}$, $I_B = 1.0 \text{ Adc}$)	V _{CE(sat)}	<u>-</u>	0.6 1.4	Vdc
Base–Emitter On Voltage (Note 3) $(I_C = 1.5 \text{ Adc}, V_{CE} = 2.0 \text{ Vdc})$	V _{BE(on)}	_	1.2	Vdc
DYNAMIC CHARACTERISTICS				
Current–Gain – Bandwidth Product ($I_C = 1.0 \text{ Adc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ MHz}$)	f⊤	2.0	-	MHz
DC Current Gain (Note 3) $ (I_C = 1.5 \text{ Adc, } V_{CE} = 2.0 \text{ Vdc}) $ $ 2N5194G $ $ 2N5195G $ $ (I_C = 4.0 \text{ Adc, } V_{CE} = 2.0 \text{ Vdc}) $ $ 2N5194G $ $ 2N5194G $ $ 2N5195G $ Collector–Emitter Saturation Voltage (Note 3) $ (I_C = 1.5 \text{ Adc, } I_B = 0.15 \text{ Adc}) $ $ (I_C = 4.0 \text{ Adc, } I_B = 1.0 \text{ Adc}) $ Base–Emitter On Voltage (Note 3) $ (I_C = 1.5 \text{ Adc, } V_{CE} = 2.0 \text{ Vdc}) $ DYNAMIC CHARACTERISTICS $ Current-Gain - Bandwidth Product $	V _{CE(sat)}	20 10 7.0 - -	80 - - - 0.6 1.4	Vdd

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

2. Indicates JEDEC registered data.

3. Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%.

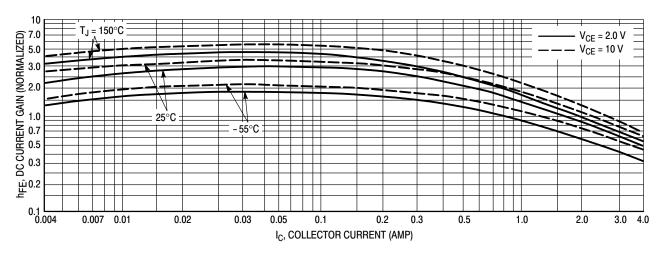


Figure 1. DC Current Gain

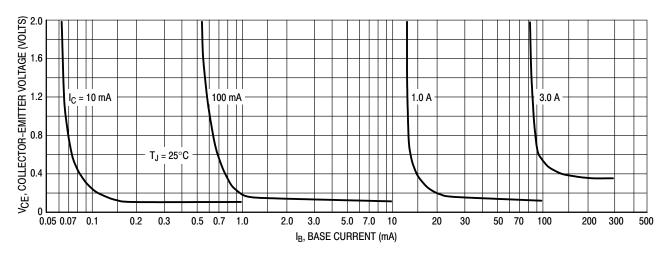


Figure 2. Collector Saturation Region

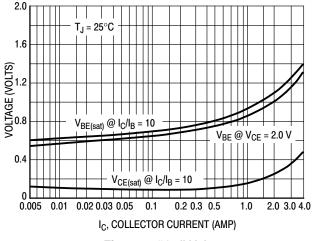
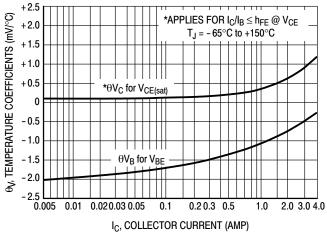



Figure 3. "On" Voltage

Figure 4. Temperature Coefficients

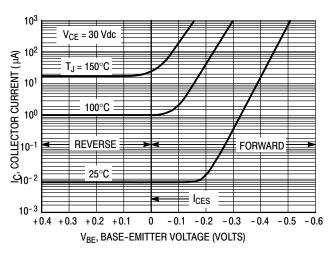


Figure 5. Collector Cut-Off Region

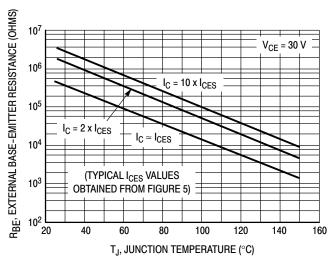


Figure 6. Effects of Base-Emitter Resistance

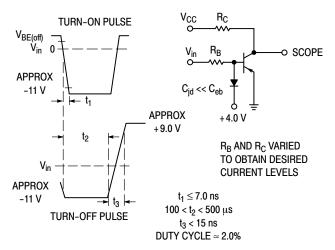


Figure 7. Switching Time Equivalent Test Circuit

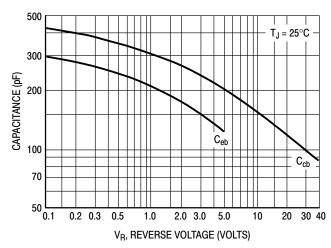


Figure 8. Capacitance

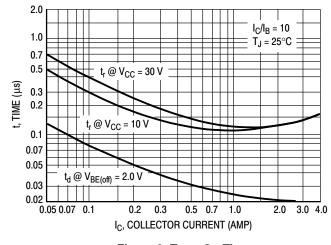


Figure 9. Turn-On Time

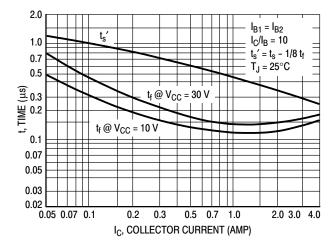


Figure 10. Turn-Off Time

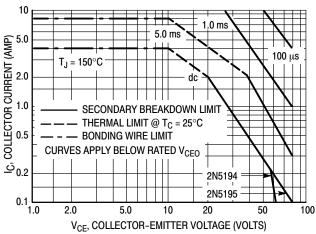


Figure 11. Rating and Thermal Data Active-Region Safe Operating Area

Note 1:

There are two limitations on the power handling ability of a transistor; average junction temperature and second breakdown. Safe operating area curves indicate $I_C - V_{CE}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 11 is based on $T_{J(pk)} = 150^{\circ}C$. T_{C} is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} \le 150^{\circ}C$. At high–case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

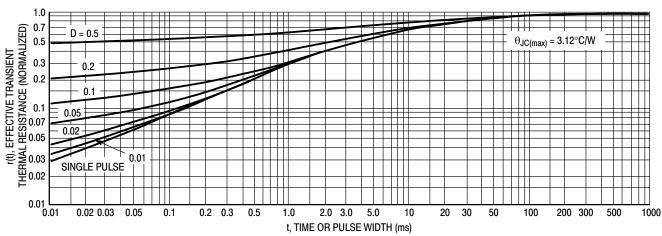


Figure 12. Thermal Response

DESIGN NOTE: USE OF TRANSIENT THERMAL RESISTANCE DATA

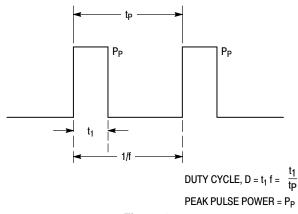
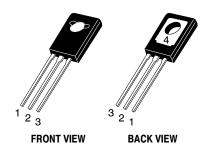


Figure 13.

A train of periodical power pulses can be represented by the model shown in Figure 13. Using the model and the device thermal response, the normalized effective transient thermal resistance of Figure 12 was calculated for various duty cycles.

To find $\theta_{JC}(t)$, multiply the value obtained from Figure 12 by the steady state value θ_{JC} .

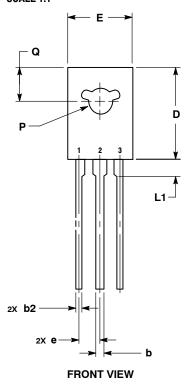
Example:

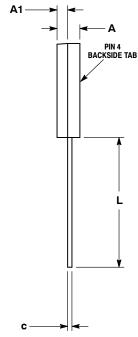

The 2N5193 is dissipating 50 watts under the following conditions: $t_1 = 0.1$ ms, $t_p = 0.5$ ms. (D = 0.2).

Using Figure 12, at a pulse width of 0.1 ms and D = 0.2, the reading of $r(t_1, D)$ is 0.27.

The peak rise in junction temperature is therefore:

 $\Delta T = r(t) \times P_P \times \theta_{JC} = 0.27 \times 50 \times 3.12 = 42.2 ^{\circ}C$

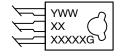

MECHANICAL CASE OUTLINE


TO-225 CASE 77-09 **ISSUE AD**

DATE 25 MAR 2015

SCALE 1:1

STYLE 2:


SIDE VIEW

STYLE 4:

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. NUMBER AND SHAPE OF LUGS OPTIONAL.

	MILLIMETERS			
DIM	MIN	MAX		
Α	2.40	3.00		
A1	1.00	1.50		
b	0.60	0.90		
b2	0.51	0.88		
С	0.39	0.63		
D	10.60	11.10		
E	7.40	7.80		
е	2.04	2.54		
L	14.50	16.63		
L1	1.27	2.54		
P	2.90	3.30		
Q	3.80	4.20		

GENERIC MARKING DIAGRAM*

= Year WW = Work Week

XXXXX = Device Code = Pb-Free Package

STYLE 5:

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

2., 4.	EMITTER COLLECTOR BASE	2., 4.	CATHODE ANODE GATE		BASE COLLECTOR EMITTER	2., 4.	ANODE 1 ANODE 2 GATE	PIN 1. 2., 4. 3.	
STYLE 6:	OATHODE	STYLE 7:		STYLE 8:		STYLE 9:		STYLE 10:	
	CATHODE	PIN 1.			SOURCE	PIN 1.			SOURCE
2., 4.	GATE	2., 4.	GATE	2., 4.	GATE	2., 4.	DRAIN	2., 4.	DRAIN
3	ANODE	3	MT 2	3	DRAIN	3	SOURCE	3	GATE

STYLE 3:

DOCUMENT NUMBER:	98ASB42049B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TO-225		PAGE 1 OF 1		

ON Semiconductor and at a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

STYLE 1:

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460

2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMMTA92QTA

2N2369ADCSM 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E

US6T6TR 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E IMZ2AT108 UMX21NTR EMT2T2R MCH6102-TL-E

FP204-TL-E NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G

NTE101 NTE13 NTE15