Plastic Darlington Complementary Silicon Power Transistors

Plastic Darlington complementary silicon power transistors are designed for general purpose amplifier and low-speed switching applications.

Features

- ESD Ratings: Machine Model, C; > 400 V Human Body Model, 3B; > 8000 V
- Epoxy Meets UL 94 V-0 @ 0.125 in
- These Devices are Pb-Free and are RoHS Compliant*

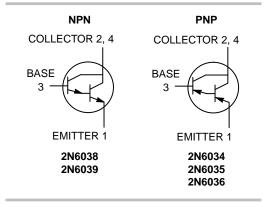
MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector–Emitter Voltage 2N6034G 2N6035G, 2N6038G 2N6036G, 2N6039G	V _{CEO}	40 60 80	Vdc
Collector–Base Voltage 2N6034G 2N6035G, 2N6038G 2N6036G, 2N6039G	V _{CBO}	40 60 80	Vdc
Emitter-Base Voltage	V _{EBO}	5.0	Vdc
Collector Current – Continuous	I _C	4.0	Adc
Collector Current – Peak	I _{CM}	8.0	Apk
Base Current	I _B	100	mAdc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	40 320	W mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	1.5 12	W mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +150	°C

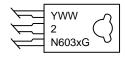
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	3.12	°C/W
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	83.3	°C/W


^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor®


http://onsemi.com

4.0 AMPERES DARLINGTON COMPLEMENTARY SILICON POWER TRANSISTORS 40, 60, 80 VOLTS, 40 WATTS

MARKING DIAGRAM

Y = Year WW = Work Week 2N603x = Device Code x = 4, 5, 6, 8, 9 G = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS	<u> </u>			<u> </u>
Collector–Emitter Sustaining Voltage (I _C = 100 mAdc, I _B = 0) 2N6034G 2N6035G, 2N6038G 2N6036G, 2N6039G	V _{CEO} (sus)	40 60 80	- - -	Vdc
Collector–Cutoff Current (V _{CE} = 40 Vdc, I _B = 0)	I _{CEO}		100	μΑ
2N6034G (V _{CE} = 60 Vdc, I _B = 0) 2N6035G, 2N6038G		_	100	
(V _{CE} = 80 Vdc, I _B = 0) 2N6036G, 2N6039G		-	100	
Collector–Cutoff Current (V _{CE} = 40 Vdc, V _{BE(off)} = 1.5 Vdc) 2N6034G	I _{CEX}	-	100	μΑ
(V _{CE} = 60 Vdc, V _{BE(off)} = 1.5 Vdc) 2N6035G, 2N6038G (V _{CE} = 80 Vdc, V _{BE(off)} = 1.5 Vdc)		-	100	
2N6036G, 2N6039G (V _{CE} = 40 Vdc, V _{BE(off)} = 1.5 Vdc, T _C = 125°C)		-	100	
2N6034G (V _{CF} = 60 Vdc, V _{RF(off)} = 1.5 Vdc, T _C = 125°C)		-	500	
2N6035G, 2N6038G (V _{CE} = 80 Vdc, V _{BE(off)} = 1.5 Vdc, T _C = 125°C) 2N6036G, 2N6039G		_	500 500	
Collector–Cutoff Current	I _{CBO}		000	mAdc
(V _{CB} = 40 Vdc, I _E = 0) 2N6034G (V _{CB} = 60 Vdc, I _E = 0)		-	0.5	
2N6035G, 2N6038G (V _{CB} = 80 Vdc, I _E = 0)		-	0.5	
2N6036G, 2N6039G Emitter–Cutoff Current	I _{EBO}		0.5	mAdc
$(V_{BE} = 5.0 \text{ Vdc}, I_C = 0)$	·EBO	-	2.0	iiii tao
ON CHARACTERISTICS			1	1
DC Current Gain ($I_C = 0.5 \text{ Adc}, V_{CE} = 3.0 \text{ Vdc}$) ($I_C = 2.0 \text{ Adc}, V_{CE} = 3.0 \text{ Vdc}$) ($I_C = 4.0 \text{ Adc}, V_{CE} = 3.0 \text{ Vdc}$)	h _{FE}	500 750 100	15,000 -	_
Collector–Emitter Saturation Voltage ($I_C = 2.0$ Adc, $I_B = 8.0$ mAdc) ($I_C = 4.0$ Adc, $I_B = 40$ mAdc)	V _{CE(sat)}	- -	2.0 3.0	Vdc
Base–Emitter Saturation Voltage (I _C = 4.0 Adc, I _B = 40 mAdc)	V _{BE(sat)}	-	4.0	Vdc
Base–Emitter On Voltage (I _C = 2.0 Adc, V _{CE} = 3.0 Vdc)	V _{BE(on)}	_	2.8	Vdc
DYNAMIC CHARACTERISTICS	l l		1	<u> </u>
Small–Signal Current–Gain (I _C = 0.75 Adc, V _{CE} = 10 Vdc, f = 1.0 MHz)	h _{fe}	25	-	-
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 0.1 MHz) 2N6034G, 2N6035G, 2N6036G	C _{ob}	_	200	pF
2N6038G, 2N6039G		-	100	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
*Indicates JEDEC Registered Data.

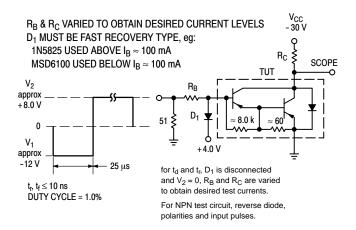


Figure 1. Switching Times Test Circuit

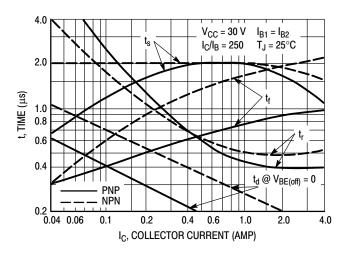
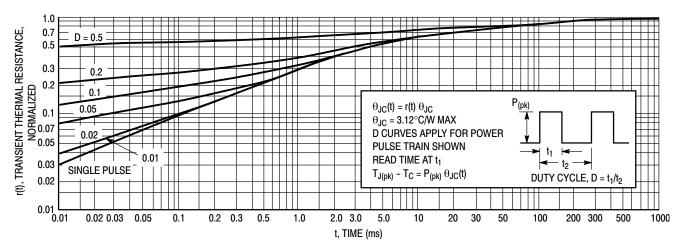
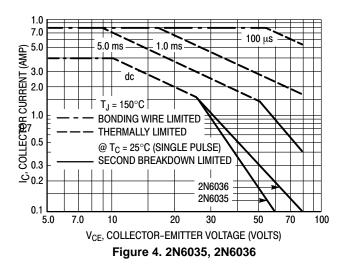
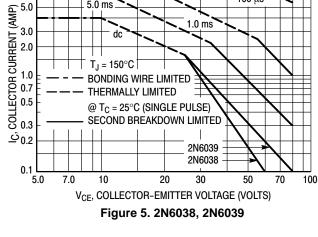


Figure 2. Switching Times

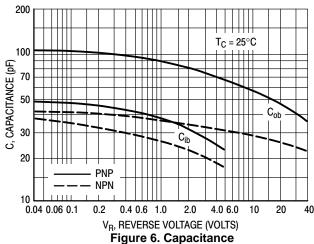



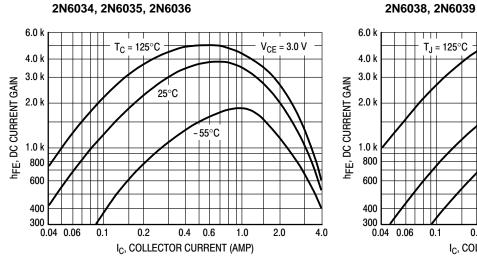

Figure 3. Thermal Response

ACTIVE-REGION SAFE-OPERATING AREA

7.0

5.0 ms




100 μs

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate I_C - V_{CE} limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figures 4 and 5 is based on $T_{J(pk)} = 150$ °C; T_C is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided T_{J(pk)} < 150 °C. $T_{J(pk)}$ may be calculated from the data in Figure 3. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

PNP

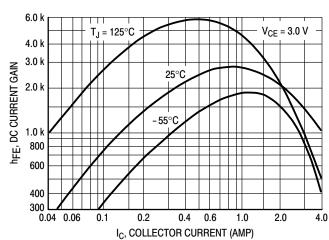


Figure 7. DC Current Gain

NPN

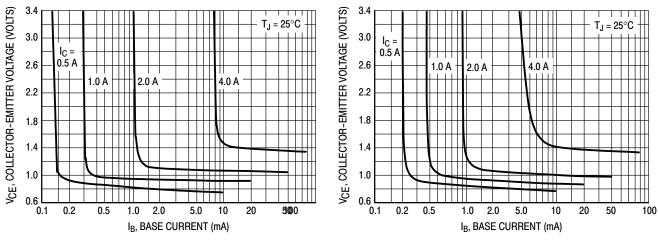


Figure 8. Collector Saturation Region

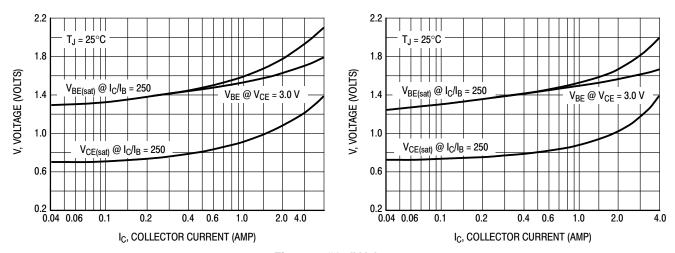
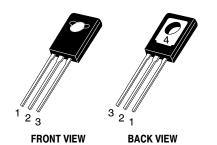
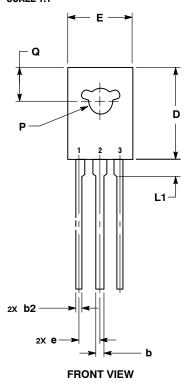
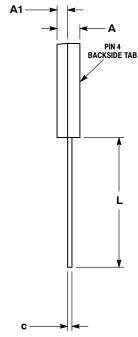



Figure 9. "On" Voltages

ORDERING INFORMATION

Device	Package	Shipping
2N6034G	TO-225 (Pb-Free)	500 Units / Box
2N6035G	TO-225 (Pb-Free)	500 Units / Box
2N6036G	TO-225 (Pb-Free)	500 Units / Box
2N6038G	TO-225 (Pb-Free)	500 Units / Box
2N6039G	TO-225 (Pb-Free)	500 Units / Box

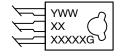

MECHANICAL CASE OUTLINE


TO-225 CASE 77-09 **ISSUE AD**

DATE 25 MAR 2015

SCALE 1:1

STYLE 2:


SIDE VIEW

STYLE 4:

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. NUMBER AND SHAPE OF LUGS OPTIONAL.

	MILLIMETERS			
DIM	MIN	MAX		
Α	2.40	3.00		
A1	1.00	1.50		
b	0.60	0.90		
b2	0.51	0.88		
С	0.39	0.63		
D	10.60	11.10		
E	7.40	7.80		
е	2.04	2.54		
L	14.50	16.63		
L1	1.27	2.54		
P	2.90	3.30		
Q	3.80	4.20		

GENERIC MARKING DIAGRAM*

= Year WW = Work Week

XXXXX = Device Code = Pb-Free Package

STYLE 5:

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

2., 4.	EMITTER COLLECTOR BASE	2., 4.	CATHODE ANODE GATE	2., 4.	BASE COLLECTOR EMITTER	2., 4.	ANODE 1 ANODE 2 GATE	PIN 1. 2., 4. 3.	
STYLE 6:	CATHODE	STYLE 7: PIN 1.		STYLE 8:	SOURCE	STYLE 9:	GATE	STYLE 10:	SOURCE
	GATE		GATE		GATE		DRAIN		DRAIN
	ANODE		MT 2		DRAIN		SOURCE	2., 4.	

STYLE 3:

DOCUMENT NUMBER:	98ASB42049B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TO-225		PAGE 1 OF 1

ON Semiconductor and at a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

STYLE 1:

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Darlington Transistors category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

NJVMJD128T4G 281287X BDV64B NJVMJD117T4G LB1205-L-E 2N6053 MPSA14 TIP140 MPSA13 TIP127L-BP 2N6383

ULN2003ACM/TR 2N7371 2N6058 2N6059 2N6051 MJ2501 MJ3001 2SB1560 2SB852KT146B 2SD2560 TIP112TU BCV27

MMBTA13-TP MMSTA28T146 NTE2557 NJVNJD35N04T4G MPSA29-D26Z FJB102TM BSP61H6327XTSA1 BU941ZPFI

2SD1980TL NTE2350 NTE245 NTE246 NTE2649 NTE46 NTE98 ULN2003ADR2G NTE2344 NTE2349 NTE2405 NTE243 NTE244

NTE247 NTE248 NTE248 NTE253 NTE2548 NTE261