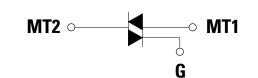


2N6071A/B Series

Pin Out

Description

Designed primarily for full-wave AC control applications, such as light dimmers, motor controls, heating controls and power supplies; or wherever full-wave silicon gate controlled solid-state devices are needed. Triac type thyristors switch from a blocking to a conducting state for either polarity of applied anode voltage with positive or negative gate triggering.


Features

- Sensitive Gate Triggering Uniquely Compatible for Direct Coupling to TTL, HTL, CMOS and Operational Amplifier Integrated Circuit Logic Functions
- Gate Triggering: 4 Mode -2N6071A, B; 2N6073A, B; 2N6075A, B
- Blocking Voltages to 600 V
- All Diffused and Glass Passivated Junctions for Greater Parameter Uniformity and Stability

Po

- Small, Rugged, Thermopad Construction for Low Thermal Resistance, High Heat Dissipation and Durability
- Lead-free package available

Functional Diagram

Additional Information

Samples

Maximum Ratings and Thermal Characteristics (T = 25°C unless otherwise noted)

- j			
Rating	Symbol	Value	Unit
*Peak Repetitive Off-State Voltage (Note 1) (T _J = -40 to 110°C, Sine Wave, 50 to 60 Hz, Gate Open) 2N6071A,B 2N6073A,B 2N6075A,B	V _{drm} , V _{rrm}	200 400 600	-
*On-State RMS Current (T _c = 85°C) Full Cycle Sine Wave 50 to 60 Hz	I _{T(RMS)}	4.0	А
*Peak Non-repetitive Surge Current (One Full cycle, 60 Hz, $T_J = +110^{\circ}$ C)	I _{TSM}	30	А
Circuit Fusing Considerations (t = 8.3 ms)	l _{2t}	3.7	A2s
*Peak Gate Power (Pulse Width "1.0 μ s, T _c = 85°C)	P _{GM}	10	W
*Average Gate Power (t = 8.3 ms, $T_c = 85^{\circ}C$)	P _{G(AV)}	0.5	W
*Peak Gate Voltage (Pulse Width "1.0 μ s, T _c = 85°C)	V _{GM}	5.0	V
*Operating Junction Temperature Range	TJ	-40 to +110	°C
*Storage Temperature Range	T _{stg}	-40 to +150	°C
Mounting Torque (6-32 Screw) (Note 2)	-	8.0	in. lb.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

V_{DBM} and V_{BM} for all types can be applied on a continuous basis. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.
 Torque rating applies with use of a compression washer. Mounting torque in excess of 6 in. Ib. does not appreciably lower case-to-sink thermal resistance. Main terminal 2 and heatsink contact pad are common.

Thermal Characteristics

Rating	Symbol	Value	Unit
*Thermal Resistance, Junction to Case	R _{8JC}	3.5	°C/W
Thermal Resistance, Junction to Ambient (Note 1)	R _{8JA}	75	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds	TL	260	°C

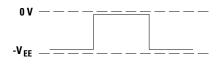
*Indicates JEDEC Registered Data

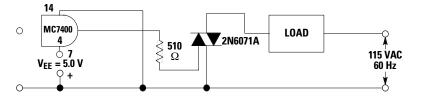
Electrical Characteristics · **OFF** ($T_c = 25^{\circ}C$ unless otherwise noted; Electricals apply in both directions)

Characteristic		Symbol	Min	Тур	Мах	Unit
*Peak Repetitive Blocking CurrentTJ = 25°C (VD = VDRM = VRRM;	TJ = 25°C	IDRM,	-	-	10	μA
Gate Open)TJ = 110° C	TJ = 110°C	IRRM	-	-	2	mA

Electrical Characteristics - ON (TC = 25°C unless otherwise noted; Electricals apply in both directions)

Characteristic			Min	Тур	Max	Unit
*Peak On-State Voltage (Note 3) (I _{TM} = ±6.0 A Peak)		С	-	-	2	V
*Gate Trigger Voltage (Continuous DC), All Quadrants (Main Terminal Voltage = 12 Vdc, R, = 100 Ω , T, = -40 °C)			-	1.4	2.5	V
Gate Non-Trigger Voltage, All Quadrants (Main Terminal Voltage = 12 Vdc, RL = 100 Ω , TJ = 110°C)			.02	-	-	V
*Holding Current	T, = -40°C		-	-	30	
(Main Terminal Voltage = 12 Vdc, Gate Open, Initiating Current = ± 1 Adc)	$T_{J} = -40^{\circ}C$ $T_{J} = 25^{\circ}C$	IH	-	-	15	mA
Turn-On Time (I _{TM} = 14 Adc, I _{GT} = 100 mAdc)		tgt	-	1.5	-	μs
				QUAD (Maximu		
	Туре	IGT @ TJ	l mA	ll mA	III mA	IV mA

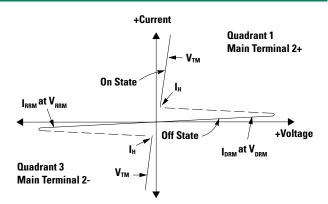

	Туре	IGT @ TJ	l mA	ll mA	III mA	IV mA
Gate Trigger Current (Continuous DC)	2N6071A 2N6073A	+25°C	5	5	5	10
(Main Terminal Voltage = 12 Vdc, RL = 100 Ω)	2N6075A	-40°C	20	20	20	30
	2N6071B 2N6073B	+25°C	3	3	3	5
	2N6073B 2N6075B	-40°C	15	15	15	20



Dynamic Characteristics

Characteristic	Symbol	Min	Тур	Max	Unit
Critical Rate of Rise of Commutation Voltage @ $V_{DRM'}T_J$ = 85°C, Gate Open, I _{TM} = 5.7 A, Exponential Waveform, Commutating di/dt = 2.0 A/ms	dv/dt(c)	-	5	10	V/µs

SAMPLE APPLICATION: TTL-Sensitive Gate 4 Ampere Triac Triggers in Modes II and III

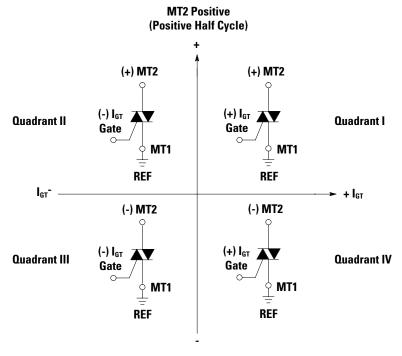

Trigger devices are recommended for gating on Triacs. They provide:

1. Consistent predictable turn-on points.

Simplified circuitry.
 Fast turn-on time for cooler, more efficient and reliable operation.

Voltage Current Characteristic of Triacs (Bidirectional Device)

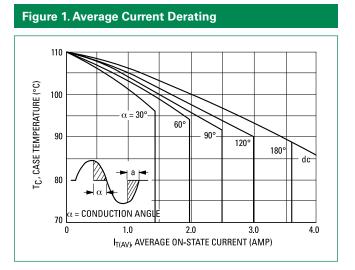
Symbol	Parameter			
V _{drm}	Peak Repetitive Forward Off State Voltage			
I _{DRM}	Peak Forward Blocking Current			
V _{RRM}	Peak Repetitive Reverse Off State Voltage			
I _{RRM}	Peak Reverse Blocking Current			
V _{TM}	Maximum On State Voltage			
I _H	Holding Current			



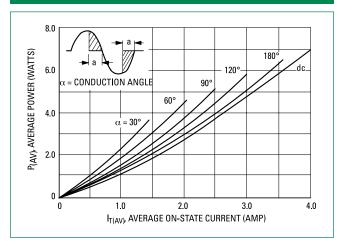
Sensitive Gate Logic Reference

IC Louis Functions		Firing C		
IC Logic Functions	I	I	III	IV
TTL	_	2N6071A Series	2N6071A Series	_
HTL	_	2N6071A Series	2N6071A Series	_
CMOS (NAND)	2N6071B Series	_	_	2N6071B Series
CMOS (Buffer)	-	2N6071B Series	2N6071B Series	-
Operational Amplifier	2N6071A Series	_	_	2N6071A Series
Zero Voltage Switch	_	2N6071A Series	2N6071A Series	_

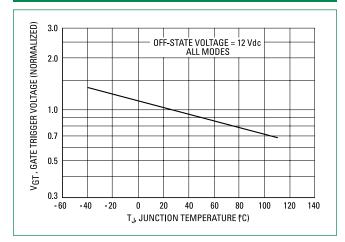
Quadrant Definitions for a Triac

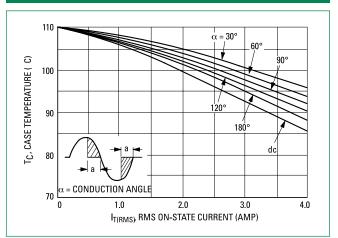


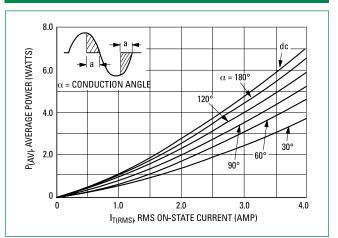
MT2 Negative (Negative Half Cycle)



Thyristors Surface Mount – 200V-600W > 2N6071A/B Series


Ratings and Characteristic Curves


Figure 3. Power Dissipation


Figure 5. Typical Gate-Trigger Voltage

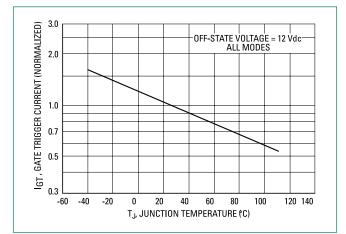

Figure 2. RMS Current Derating

Figure 4. Power Dissipation

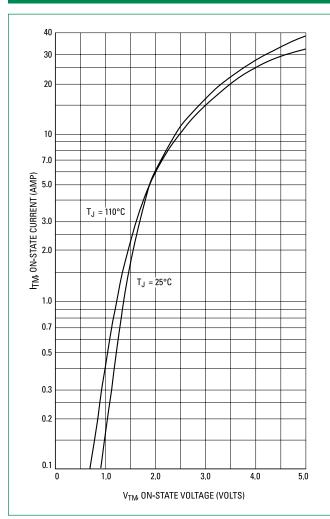
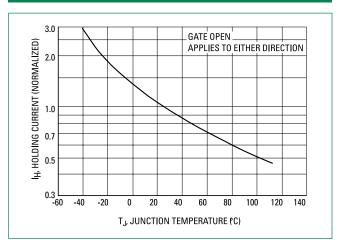
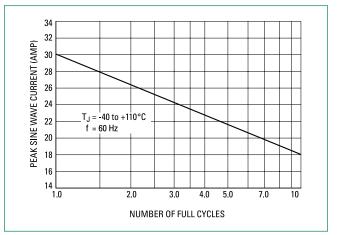


Figure 6. Typical Gate-Trigger Current




Figure 7. Maximum On-State Characteristics

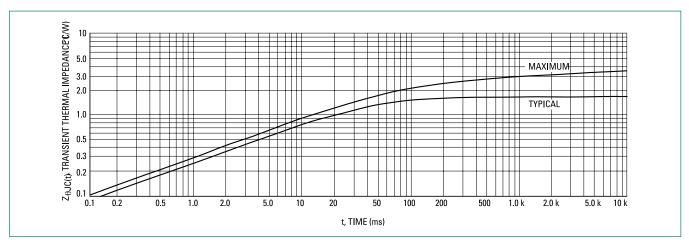
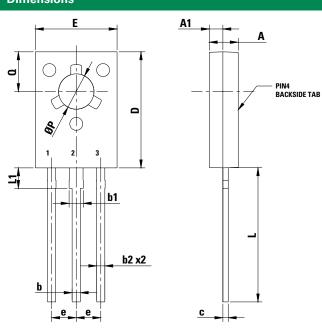

Figure 8. Typical Holding Current

Figure 9. Maximum Allowable Surge Current


Figure 10. Thermal Response

Thyristors Surface Mount – 200V-600W > 2N6071A/B Series

Dim	Inches		Millin	neters
Dim	Min	Max	Min	Max
Α	0.102	0.110	2.60	2.80
A1	0.047	0.055	1.20	1.40
b	0.028	0.034	0.70	0.86
b2	0.028	0.034	0.70	0.86
С	0.019	0.022	0.49	0.57
D	0.417	0.449	10.60	11.40
E	0.291	0.323	7.40	8.20
е	0.090 TYP		2.29 TYP	
L	0.551	0.630	14.00	16.00
L1	0.091	0.106	2.30	2.70
Р	0.118	0.134	3.00	3.40
٥	0.142	0.157	3.60	4.00
b1	0.047	0.055	1.2	1.4

Dimensioning and Tolerancing Per ANSI Y14.5M, 1982.
 Controlling Dimension: Inch.
 077-01 Thru -08 Obsolete, New Standard 077-09.

Part Marking System

Rear View Show Tab

T0-225 Case 077 Style 5

1. Cathode 2. Anode 3. Gate

=1,3,5 =A,B =Year х y Y M =Month

	YMAXX 2N 607xyG
<u> </u>	607XYG

A =Assembly Site XX =Lot Serial Code

Ordering Information

Device	Package	Shipping [†]
2N6071A	TO-225	
2N6071AG	TO-225 (Pb-Free)	2500 Units / Box
2N6071AT	TO-225	50 Units / Tube
2N6071ATG	TO-225 (Pb-Free)	1920 Units / Box
2N6071B	TO-225	
2N6071BG	TO-225 (Pb-Free)	2500 Units / Box
2N6071BT	TO-225	50 Units / Tube
2N6071BTG	TO-225 (Pb-Free)	1920 Units / Box
2N6073A	TO-225	
2N6073AG	TO-225 (Pb-Free)	
2N6073B	TO-225	
2N6073BG	TO-225 (Pb-Free)	2500 Units / Box
2N6075A	TO-225	2500 Offits / Box
2N6075AG	TO-225 (Pb-Free)	
2N6075B	TO-225	
2N6075BG	TO-225 (Pb-Free)	

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littlefuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at http://www.littelfuse.com/disclaimer-electronics.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Triacs category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

 CTA08-1000CW
 CTB24-800BW
 CTA08-1000C
 CTA12-800BWPT
 CTA16-1000B
 CTB24-800B
 BT137-600-0Q
 5615
 OT415Q
 2N6075A

 NTE5629
 NTE5688
 CTB08-400CW
 D31410
 BTA425Z-800BTQ
 KS100N12
 TOPT16-800C0,127
 OT408,135
 BT134-800E
 BT136D

 BTB16Q-600BW
 Z0409MF
 BTA04-600B
 BTA06-600BRG
 BTA06-800BWRG
 BTA08-600BRG
 BTA08-600,127

 MAC97A6,116
 BT137-600E,127
 BTB16-600CW3G
 BTB16-600CW3G
 Z0109MN,135
 T825T-6I
 T1220T-6I
 NTE5638
 ACST1235-8FP

 BT136X-600E,127
 MAC4DLM-1G
 BT134-600D,127
 BTA08-600BW3G
 NTE56017
 NTE56018
 NTE56059
 NTE5608

 NTE5609
 NTE56020
 NTE56022
 NTE56022
 NTE56020
 NTE56022