

Functional Description

The AC/ACT153 is a dual 4-input multiplexer. It can select two bits of data from up to four sources under the control of the common Select inputs ($\mathrm{S}_{0}, \mathrm{~S}_{1}$). The two 4-input multiplexer circuits have individual active-LOW Enables ($\overline{\mathrm{E}}_{\mathrm{a}}, \overline{\mathrm{E}}_{\mathrm{b}}$) which can be used to strobe the outputs independently. When the Enables ($\overline{\mathrm{E}}_{\mathrm{a}}, \overline{\mathrm{E}}_{\mathrm{b}}$) are HIGH, the corresponding outputs Z_{a}, Z_{b}) are forced LOW. The AC/ACT153 is the logic implementation of a 2-pole, 4-position switch, where the position of the switch is determined by the logic levels supplied to the Select inputs. The logic equations for the outputs are shown below.

$$
\begin{aligned}
& \mathrm{Z}_{\mathrm{a}}=\overline{\mathrm{E}}_{\mathrm{a}} \cdot\left(\mathrm{l}_{0 \mathrm{a}} \cdot \overline{\mathrm{~S}}_{1} \cdot \overline{\mathrm{~S}}_{0}+\mathrm{I}_{1 \mathrm{a}} \cdot \overline{\mathrm{~S}}_{1} \cdot \mathrm{~S}_{0}+\right. \\
& \mathrm{I}_{2 \mathrm{a}} \cdot \mathrm{~S}_{1} \cdot \overline{\mathrm{~S}}_{\overline{0}} \overline{+} \overline{I_{\overline{3}}} \cdot \overline{\mathrm{~S}}_{\overline{1}} \cdot \overline{\mathrm{~S}}_{\overline{0}} \overline{\bar{\prime}} \\
& \mathrm{Z}_{\mathrm{b}}=\overline{\mathrm{E}}_{\mathrm{b}} \cdot\left(\mathrm{I}_{\mathrm{Ob}} \cdot \overline{\mathrm{~S}}_{1} \cdot \overline{\mathrm{~S}}_{0}+\mathrm{I}_{1 \mathrm{~b}} \cdot \overline{\mathrm{~S}}_{1} \cdot \mathrm{~S}_{0}+\right. \\
& \mathrm{I}_{2 \mathrm{~b}} \cdot \mathrm{~S}_{1} \cdot \overline{\mathrm{~S}}_{\overline{0}}^{-\overline{+}} \overline{\mathrm{I}}_{\overline{\mathrm{Bb}}} \cdot \overline{\mathrm{~S}}_{\overline{1}} \cdot \overline{\mathrm{~S}_{\overline{0}} \overline{\bar{\prime}}}
\end{aligned}
$$

Truth Table

Select Inputs							
Inputs (a or b)						Output	
S $_{\mathbf{0}}$	S $_{\mathbf{1}}$	$\overline{\text { E }}$	I $_{\mathbf{0}}$	I $_{\mathbf{1}}$	I $_{\mathbf{2}}$	I $_{\mathbf{3}}$	Z
X	X	H	X	X	X	X	L
L	L	L	L	X	X	X	L
L	L	L	H	X	X	X	H
H	L	L	X	L	X	X	L
H	L	L	X	H	X	X	H
L	H	L	X	X	L	X	L
L	H	L	X	X	H	X	H
H	H	L	X	X	X	L	L
H	H	L	X	X	X	H	H

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level L = LOW Voltage Level
X = Immaterial

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

AC Electrical Characteristics for ACT

Symbol	Parameter	V_{Cc} (V) (Note 8)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
			Min	Typ	Max	Min	Max	
$t_{\text {PLH }}$	Propagation Delay $S_{n} \text { to } Z_{n}$	5.0	3.0	7.0	11.5	2.0	13.5	ns
$\mathrm{t}_{\text {PHL }}$	$\begin{aligned} & \text { Propagation Delay } \\ & S_{n} \text { to } Z_{n} \end{aligned}$	5.0	3.0	7.0	11.5	2.5	13.5	ns
$t_{\text {PLH }}$	Propagation Delay $\bar{E}_{n} \text { to } Z_{n}$	5.0	2.0	6.5	10.5	2.0	12.5	ns
$t_{\text {PHL }}$	Propagation Delay $\bar{E}_{n} \text { to } Z_{n}$	5.0	3.0	6.0	9.5	2.5	11.0	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay I_{n} to Z_{n}	5.0	2.5	5.5	9.5	2.0	11.0	ns
$\mathrm{t}_{\text {PHL }}$	$\begin{aligned} & \text { Propagation Delay } \\ & I_{n} \text { to } Z_{n} \end{aligned}$	5.0	2.0	5.5	9.5	2.0	11.0	ns

Capacitance

Symbol	Parameter	Typ	Units	Conditions
C_{IN}	Input Capacitance	4.5	pF	$\mathrm{V}_{\mathrm{CC}}=\mathrm{OPEN}$
C_{PD}	Power Dissipation Capacitance	65.0	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

74AC153•74ACT153
Physical Dimensions inches (millimeters) unless otherwise noted

16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Body Package Number M16A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LAND PATTERN RECOMMENDATION

DIMENSIONS ARE IN MILLIMETERS

NOTES:
A. CONFORMS TO EIA.J EDR-7320 REGISTRATION, ESTABLISHED IN DECEMBER, 1998.
B. DIMENSIONS ARE IN MILLIMETERS
C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.

M16DRevB1

16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide Package Number M16D

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)
 Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for ON Semiconductor manufacturer:
Other Similar products are found below :
1.5SMC82AT3G 74LCX574WM FST3126MX MC78L08ACP MMBTA42 FDD8424H_F085A NTZD3154NT1H KSA1015GRTA BAT42XV2 007851X 702607H MC33079DG MC34072DR2G MC34151P MC78L08ACDG 74VHC14MX 74VHC541MTCX FAN3111ESX FDMC86262P FDMD8530 FEBFL7733A_L53U021A FEBFOD8333 MM74HC138MX MMBZ5233B FOD3120SD FPAB30BH60B FQP2N80 1.5KE16AG MT9V115EBKSTCH-GEVB NB6L295MNGEVB NB7L1008MNGEVB NC7WZ126K8X NCL30000LED2GEVB NCN9252MUGEVB NCP1075PSRGEVB NCV4274CDT33RKG NCV887100D1R2G NDT2955 1N5339B NSIC2030JBT3G NV890231MWTXGEVB CAT4101AEVB KA7818ETU S3JB 2SC5569-TD-E FEBFL7734_L55L008A 1V5KE39CA FNB33060T AMIS30422DBGEVB AMIS3062XGEVK

