FAIRCHILD

SEMICONDUCTOR TM

74AC153 • 74ACT153 Dual 4-Input Multiplexer

General Description

The AC/ACT153 is a high-speed dual 4-input multiplexer with common select inputs and individual enable inputs for each section. It can select two lines of data from four sources. The two buffered outputs present data in the true (non-inverted) form. In addition to multiplexer operation, the AC/ACT153 can act as a function generator and generate any two functions of three variables.

November 1988 Revised November 1999

Features

- I_{CC} reduced by 50%
- Outputs source/sink 24 mA
- ACT153 has TTL-compatible inputs

Ordering Code:

Logic Symbols

Order Number	Package Number	Package Description				
74AC153SC	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Body				
74AC153SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide				
74AC153MTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide				
74AC153PC	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide				
74ACT153SC	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Body				
74ACT153MTC MTC16 16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide						
		16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm W by appending suffix letter "X" to the ordering code.				

lob

і_{1b} І_{2b} І_{3b}

Connection Diagram

Pin Descriptions

Pin Names	Description
I _{0a} –I _{3a}	Side A Data Inputs
I _{0b} –I _{3b}	Side B Data Inputs
S ₀ , S ₁	Common Select Inputs
Ēa	Side A Enable Input
Ēb	Side B Enable Input
Za	Side A Output
Zb	Side B Output

FACT[™] is a trademark of Fairchild Semiconductor Corporation.

Zh

Functional Description

The AC/ACT153 is a dual 4-input multiplexer. It can select two bits of data from up to four sources under the control of the common Select inputs (S₀, S₁). The two 4-input multiplexer circuits have individual active-LOW Enables ($\overline{E}_a, \overline{E}_b$) which can be used to strobe the outputs independently. When the Enables ($\overline{E}_a, \overline{E}_b$) are HIGH, the corresponding outputs Z_a, Z_b) are forced LOW. The AC/ACT153 is the logic implementation of a 2-pole, 4-position switch, where the position of the switch is determined by the logic levels supplied to the Select inputs. The logic equations for the outputs are shown below.

$$\begin{split} Z_a &= \overline{E}_a \bullet (I_{0a} \bullet \overline{S}_1 \bullet \overline{S}_0 + I_{1a} \bullet \overline{S}_1 \bullet S_0 + \\ I_{2a} \bullet S_1 \bullet \overline{S}_0 \overline{+} \overline{I}_{\overline{3}\overline{a}} \bullet \overline{S}_1 \overline{\bullet} \overline{S}_0] \\ Z_b &= \overline{E}_b \bullet (I_{0b} \bullet \overline{S}_1 \bullet \overline{S}_0 + I_{1b} \bullet \overline{S}_1 \bullet S_0 + \\ I_{2b} \bullet S_1 \bullet \overline{S}_0 \overline{+} \overline{I}_{\overline{3}\overline{b}} \overline{\bullet} \overline{S}_1 \overline{\bullet} \overline{S}_0] \end{split}$$

	lect outs		Inpu	Output			
S ₀	S ₁	E	I ₀	I ₁	I ₂	I ₃	Z
Х	Х	Н	Х	Х	Х	Х	L
L	L	L	L	Х	Х	Х	L
L	L	L	Н	Х	Х	Х	н
н	L	L	х	L	х	х	L
н	L	L	х	н	х	х	н
L	н	L	Х	Х	L	Х	L
L	н	L	Х	Х	Н	Х	н
н	н	L	Х	Х	Х	L	L
Н	н	L	Х	Х	Х	н	н

H = HIGH Voltage Level L = LOW Voltage Level

Truth Table

X = Immaterial

Absolute Maximum Ratings(Note 1) **Recommended Operating** Conditions -0.5V to +7.0V Supply Voltage (V_{CC}) DC Input Diode Current (I_{IK}) Supply Voltage (V_{CC}) $V_{I} = -0.5V$ –20 mA AC 2.0V to 6.0V $V_{I} = V_{CC} + 0.5V$ +20 mA 4.5V to 5.5V ACT DC Input Voltage (VI) –0.5V to V_{CC} + 0.5V Input Voltage (VI) 0V to V_{CC} DC Output Diode Current (I_{OK}) Output Voltage (V_O) 0V to V_{CC} $V_{O} = -0.5V$ –20 mA Operating Temperature (T_A) -40°C to +85°C $V_O = V_{CC} + 0.5V$ +20 mA Minimum Input Edge Rate $(\Delta V/\Delta t)$ DC Output Voltage (V_O) -0.5V to $V_{CC} + 0.5V$ AC Devices DC Output Source V_{IN} from 30% to 70% of V_{CC} or Sink Current (I_O) ±50 mA V_{CC} @ 3.3V, 4.5V, 5.5V 125 mV/ns DC V_{CC} or Ground Current Minimum Input Edge Rate ($\Delta V/\Delta t$) per Output Pin (I_{CC} or I_{GND}) ±50 mA ACT Devices $-65^{\circ}C$ to $+150^{\circ}C$ Storage Temperature (T_{STG}) V_{IN} from 0.8V to 2.0V Junction Temperature (T_J) V_{CC} @ 4.5V, 5.5V 125 mV/ns PDIP 140°C Note 1: Absolute maximum ratings are those values beyond which damage

Note 1: Adsolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of FACT™ circuits outside databook specifications.

DC Electrical Characteristics for AC

Symbol	Parameter	V _{cc}	T _A = +	-25°C	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	Units	Conditions
Symbol	Parameter	(V)	Тур	Gu	aranteed Limits	Units	Conditions
VIH	Minimum HIGH Level	3.0	1.5	2.1	2.1		$V_{OUT} = 0.1V$
	Input Voltage	4.5	2.25	3.15	3.15	V	or $V_{CC} - 0.1V$
		5.5	2.75	3.85	3.85		
V _{IL}	Maximum LOW Level	3.0	1.5	0.9	0.9		$V_{OUT} = 0.1V$
	Input Voltage	4.5	2.25	1.35	1.35	V	or $V_{CC} - 0.1V$
		5.5	2.75	1.65	1.65		
V _{ОН}	Minimum HIGH Level	3.0	2.99	2.9	2.9		
	Output Voltage	4.5	4.49	4.4	4.4	V	$I_{OUT} = -50 \ \mu A$
		5.5	5.49	5.4	5.4		
							$V_{IN} = V_{IL} \text{ or } V_{IH}$
		3.0		2.56	2.46		$I_{OH} = -12 \text{ mA}$
		4.5		3.86	3.76	V	$I_{OH} = -24 \text{ mA}$
		5.5		4.86	4.76		$I_{OH} = -24 \text{ mA}$ (Note 2
V _{OL}	Maximum LOW Level	3.0	0.002	0.1	0.1		
	Output Voltage	4.5	0.001	0.1	0.1	V	$I_{OUT} = 50 \ \mu A$
		5.5	0.001	0.1	0.1		
							$V_{IN} = V_{IL} \text{ or } V_{IH}$
		3.0		0.36	0.44		$I_{OL} = 12 \text{ mA}$
		4.5		0.36	0.44	V	$I_{OL} = 24 \text{ mA}$
		5.5		0.36	0.44		I _{OL} = 24 mA (Note 2)
I _{IN}	Maximum Input	5.5		±0.1	±1.0	μA	$V_I = V_{CC}, GND$
(Note 4)	Leakage Current			_0.1		μι	
I _{OLD}	Minimum Dynamic	5.5			75	mA	$V_{OLD} = 1.65V Max$
I _{OHD}	Output Current (Note 3)	5.5			-75	mA	$V_{OHD} = 3.85V$ Min
I _{CC}	Maximum Quiescent	5.5		4.0	40.0	μA	$V_{IN} = V_{CC}$
(Note 4)	Supply Current	0.0		-1.0	-10.0	μι	or GND

Note 3: Maximum test duration 2.0 ms, one output loaded at a time.

Note 4: I_{IN} and I_{CC} @ 3.0V are guaranteed to be less than or equal to the respective limit @ 5.5V V_{CC}.

74AC153 • 74ACT153

DC Electrical Characteristics for ACT

Symbol	Parameter	V _{cc}	T _A = -	+ 25°C	$T_A = -40^{\circ}C$ to $+85^{\circ}C$	Units	Conditions
		(V)	Тур	Gι	aranteed Limits	Units	Conditions
VIH	Minimum HIGH Level	4.5	1.5	2.0	2.0	V	$V_{OUT} = 0.1V$
	Input Voltage	5.5	1.5	2.0	2.0	v	or $V_{CC} - 0.1V$
VIL	Maximum LOW Level	4.5	1.5	0.8	0.8	V	$V_{OUT} = 0.1V$
	Input Voltage	5.5	1.5	0.8	0.8	v	or $V_{CC} - 0.1V$
V _{OH}	Minimum HIGH Level	4.5	4.49	4.4	4.4	V	I _{OUT} = -50 μA
	Output Voltage	5.5	5.49	5.4	5.4	v	$I_{OUT} = -50 \mu A$
							$V_{IN} = V_{IL} \text{ or } V_{IH}$
		4.5		3.86	3.76	V	$I_{OH} = -24 \text{ mA}$
		5.5		4.86	4.76		I _{OH} = - 24 mA (Note 5
V _{OL}	Maximum LOW Level	4.5	0.001	0.1	0.1	V	I _{OUT} = 50 μA
	Output Voltage	5.5	0.001	0.1	0.1	v	10UT - 30 μA
							$V_{IN} = V_{IL} \text{ or } V_{IH}$
		4.5		0.36	0.44	V	I _{OL} = 24 mA
		5.5		0.36	0.44		I _{OL} = 24 mA (Note 5)
I _{IN}	Maximum Input	5.5		±0.1	±1.0	μA	$V_I = V_{CC}$, GND
	Leakage Current	0.0		±0.1	1.0	μΛ	v] = v _{CC} , GND
I _{CCT}	Maximum	5.5	0.6		1.5	mA	$V_{1} = V_{CC} - 2.1V$
	I _{CC} /Input	0.0	0.0		1.5	IIIA	v] = v _{CC} = 2.1v
I _{OLD}	Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65V Max
I _{OHD}	Output Current (Note 6)	5.5			-75	mA	V _{OHD} = 3.85V Min
I _{CC}	Maximum Quiescent Supply Current	5.5		4.0	40.0	μΑ	V _{IN} = V _{CC} or GND

Note 5: All outputs loaded; thresholds on input associated with output under test.

Note 6: Maximum test duration 2.0 ms, one output loaded at a time.

AC Electrical Characteristics for AC

		V _{cc}		$T_A = +25^{\circ}C$		$T_A = -40^{\circ}C$ to $+85^{\circ}C$		
Symbol	Parameter	(V)	$C_L = 50 \ pF$			C _L = 50 pF		Units
		(Note 7)	Min	Тур	Max	Min	Max	
t _{PLH}	Propagation Delay	3.3	2.5	9.5	15.0	2.5	17.5	
	S _n to Z _n	5.0	2.0	6.5	11.0	2.0	12.5	ns
t _{PHL}	Propagation Delay	3.3	3.0	8.5	14.5	2.5	16.5	ns
	S _n to Z _n	5.0	2.5	6.5	11.0	2.0	12.0	
t _{PLH}	Propagation Delay	3.3	2.5	8.0	13.5	2.0	16.0	
	E to Z _n	5.0	1.5	5.5	9.5	1.5	11.0	ns
t _{PHL}	Propagation Delay	3.3	2.5	7.0	11.0	2.0	12.5	
	Ē to Z _n	5.0	2.0	5.0	8.0	1.5	9.0	ns
t _{PLH}	Propagation Delay	3.3	2.5	7.5	12.5	2.0	14.5	ns
	I _n to Z _n	5.0	1.5	5.5	9.0	1.5	10.5	115
t _{PHL}	Propagation Delay	3.3	1.5	7.0	11.5	1.5	13.0	
	I _n to Z _n	5.0	1.5	5.0	8.5	1.5	10.0	ns

Note 7: Voltage Range 3.3 is $3.3V \pm 0.3V$

Voltage Range 5.0 is 5.0V $\pm\,0.5V$

		v _{cc}	T _A = +25°C C _L = 50 pF			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $C_L = 50 \text{ pF}$		Units
Symbol	Parameter	(V)						
		(Note 8)	Min	Тур	Max	Min	Max	
t _{PLH}	Propagation Delay S _n to Z _n	5.0	3.0	7.0	11.5	2.0	13.5	ns
t _{PHL}	Propagation Delay S _n to Z _n	5.0	3.0	7.0	11.5	2.5	13.5	ns
t _{PLH}	Propagation Delay \overline{E}_n to Z_n	5.0	2.0	6.5	10.5	2.0	12.5	ns
t _{PHL}	Propagation Delay \overline{E}_n to Z_n	5.0	3.0	6.0	9.5	2.5	11.0	ns
t _{PLH}	Propagation Delay I _n to Z _n	5.0	2.5	5.5	9.5	2.0	11.0	ns
t _{PHL}	Propagation Delay I_n to Z_n	5.0	2.0	5.5	9.5	2.0	11.0	ns

 $I_n \text{ to } Z_n$ Note 8: Voltage Range 5.0 is 5.0V \pm 0.5V

Capacitance

Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = OPEN
C _{PD}	Power Dissipation Capacitance	65.0	pF	$V_{CC} = 5.0V$

74AC153 • 74ACT153

74AC153 • 74ACT153 Dual 4-Input Multiplexer

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for ON Semiconductor manufacturer:

Other Similar products are found below :

1.5SMC82AT3G 74LCX574WM FST3126MX MC78L08ACP MMBTA42 FDD8424H_F085A NTZD3154NT1H KSA1015GRTA BAT42XV2 007851X 702607H MC33079DG MC34072DR2G MC34151P MC78L08ACDG 74VHC14MX 74VHC541MTCX FAN3111ESX FDMC86262P FDMD8530 FEBFL7733A_L53U021A FEBFOD8333 MM74HC138MX MMBZ5233B FOD3120SD FPAB30BH60B FQP2N80 1.5KE16AG MT9V115EBKSTCH-GEVB NB6L295MNGEVB NB7L1008MNGEVB NC7WZ126K8X NCL30000LED2GEVB NCN9252MUGEVB NCP1075PSRGEVB NCV4274CDT33RKG NCV887100D1R2G NDT2955 1N5339B NSIC2030JBT3G NV890231MWTXGEVB CAT4101AEVB KA7818ETU S3JB 2SC5569-TD-E FEBFL7734_L55L008A 1V5KE39CA FNB33060T AMIS30422DBGEVB AMIS3062XGEVK