

January 2008

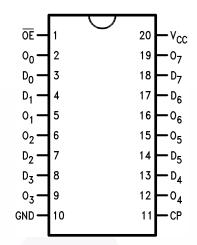
74AC374, 74ACT374 **Octal D-Type Flip-Flop with 3-STATE Outputs**

Features

- I_{CC} and I_{OZ} reduced by 50%
- Buffered positive edge-triggered clock
- 3-STATE outputs for bus-oriented applications
- Outputs source/sink 24mA
- See 273 for reset version
- See 377 for clock enable version
- See 373 for transparent latch version
- See 574 for broadside pinout version
- See 564 for broadside pinout version with inverted outputs
- ACT374 has TTL-compatible inputs

General Description

The AC/ACT374 is a high-speed, low-power octal D-type flip-flop featuring separate D-type inputs for each flip-flop and 3-STATE outputs for bus-oriented applications. A buffered Clock (CP) and Output Enable (OE) are common to all flip-flops.

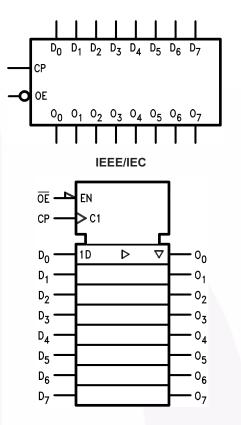

Order	Package	
Number	Number	Package Description
74AC374SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74AC374SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74AC374MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74AC374PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
74ACT374SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74ACT374SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74ACT374MSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), JEDEC MO-150, 5.3mm Wide
74ACT374MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74ACT374PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

ring Information

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering number.

All packages are lead free per JEDEC: J-STD-020B standard.

Connection Diagram


Pin Description

Pin Names	Description
D ₀ -D ₇	Data Inputs
СР	Clock Pulse Input
OE	3-STATE Output Enable Input
0 ₀ –0 ₇	3-STATE Outputs

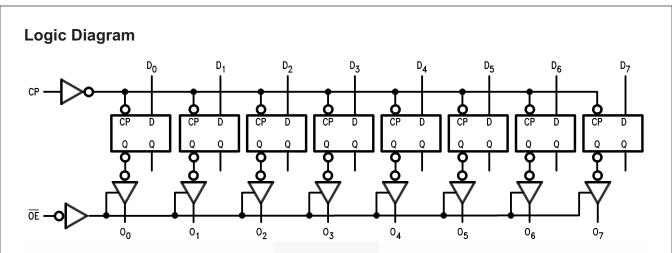
Functional Description

The AC/ACT374 consists of eight edge-triggered flipflops with individual D-type inputs and 3-STATE true outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CP) transition. With the Output Enable (\overline{OE}) LOW, the contents of the eight flip-flops are available at the outputs. When the \overline{OE} is HIGH, the outputs go to the high impedance state. Operation of the \overline{OE} input does not affect the state of the flip-flops.

Logic Symbols

Truth Table

	Inputs						
D _n	СР	OE	O _n				
Н	~	L	Н				
L	~	L	L				
Х	Х	Н	Z				


H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Z = High Impedance

✓ = LOW-to-HIGH Transition

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	-0.5V to +7.0V
I _{IK}	DC Input Diode Current	
	$V_{I} = -0.5V$	–20mA
	$V_{I} = V_{CC} + 0.5$	+20mA
VI	DC Input Voltage	-0.5V to V _{CC} + 0.5V
I _{OK}	DC Output Diode Current	
	$V_{O} = -0.5V$	–20mA
	$V_{O} = V_{CC} + 0.5V$	+20mA
Vo	DC Output Voltage	-0.5V to V _{CC} + 0.5V
Ι _Ο	DC Output Source or Sink Current	±50mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current per Output Pin	±50mA
T _{STG}	Storage Temperature	-65°C to +150°C
TJ	Junction Temperature	140°C

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	
	AC	2.0V to 6.0V
	ACT	4.5V to 5.5V
VI	Input Voltage	0V to V _{CC}
Vo	Output Voltage	0V to V _{CC}
T _A	Operating Temperature	-40°C to +85°C
$\Delta V / \Delta t$	Minimum Input Edge Rate, AC Devices:	125mV/ns
	$V_{\rm IN}$ from 30% to 70% of $V_{\rm CC}, V_{\rm CC}$ @ 3.3V, 4.5V, 5.5V	
$\Delta V / \Delta t$	Minimum Input Edge Rate, ACT Devices:	125mV/ns
	V _{IN} from 0.8V to 2.0V, V _{CC} @ 4.5V, 5.5V	

				T _A = -	⊦25°C	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	
Symbol	Parameter	V _{CC} (V)	Conditions	Тур.	G	uaranteed Limits	Units
V _{IH}	Minimum HIGH Level	3.0	$V_{OUT} = 0.1V \text{ or}$	1.5	2.1	2.1	V
	Input Voltage	4.5	V _{CC} – 0.1V	2.25	3.15	3.15	1
		5.5		2.75	3.85	3.85	1
V _{IL}	Maximum LOW Level	3.0	$V_{OUT} = 0.1V$ or	1.5	0.9	0.9	V
	Input Voltage	4.5	V _{CC} – 0.1V	2.25	1.35	1.35	
		5.5		2.75	1.65	1.65	
V _{OH}	Minimum HIGH Level	3.0	I _{OUT} =50μA	2.99	2.9	2.9	V
	Output Voltage	4.5		4.49	4.4	4.4	
		5.5		5.49	5.4	5.4	
		3.0	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OH} = -12 \text{mA}$		2.56	2.46	
		4.5	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OH} = -24 \text{mA}$		3.86	3.76	
		5.5	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OH} = -24 \text{mA}^{(1)}$		4.86	4.76	
V _{OL}		3.0	$I_{OUT} = 50 \mu A$	0.002	0.1	0.1	V
	Output Voltage	4.5		0.001	0.1	0.1	
		5.5		0.001	0.1	0.1	
		3.0	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OL} = 12 \text{mA}$		0.36	0.44	
		4.5	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OL} = 24 \text{mA}$		0.36	0.44	
		5.5	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OL} = 24 \text{mA}^{(1)}$		0.36	0.44	
I _{IN} ⁽²⁾	Maximum Input Leakage Current	5.5	$V_I = V_{CC}$, GND		±0.1	±1.0	μA
I _{OZ}	Maximum 3-STATE Leakage Current	5.5			±0.25	±2.5	μA
I _{OLD}	Minimum Dynamic	5.5	V _{OLD} = 1.65V Max.			75	mA
I _{OHD}	Output Current ⁽³⁾	5.5	V _{OHD} = 3.85V Min.			-75	mA
I _{CC} ⁽²⁾	Maximum Quiescent Supply Current	5.5	$V_{IN} = V_{CC}$ or GND		4.0	40.0	μA

DC Electrical Characteristics for AC

Notes:

1. All outputs loaded; thresholds on input associated with output under test.

2. $I_{\rm IN}$ and $I_{\rm CC}$ @ 3.0V are guaranteed to be less than or equal to the respective limit @ 5.5V $V_{\rm CC}.$

3. Maximum test duration 2.0ms, one output loaded at a time.

				$T_A = -$	+ 25°C	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	
Symbol	Parameter	V _{CC} (V)	Conditions	Тур.	G	uaranteed Limits	Units
V _{IH}	Minimum HIGH Level	4.5	$V_{OUT} = 0.1V$ or	1.5	2.0	2.0	V
	Input Voltage	5.5	V _{CC} – 0.1V	1.5	2.0	2.0	
V _{IL}	Maximum LOW	4.5	$V_{OUT} = 0.1V$ or	1.5	0.8	0.8	V
	Level Input Voltage	5.5	V _{CC} – 0.1V	1.5	0.8	0.8	
V _{OH}	Minimum HIGH Level	4.5	$I_{OUT} = -50 \mu A$	4.49	4.4	4.4	V
	Output Voltage	5.5		5.49	5.4	5.4	
		4.5	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OH} = -24 \text{mA}$		3.86	3.76	
		5.5	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OH} = -24 \text{mA}^{(4)}$		4.86	4.76	
V _{OL}	Maximum LOW Level Output Voltage	4.5	Ι _{ΟUT} = 50μΑ	0.001	0.1	0.1	V
		5.5		0.001	0.1	0.1	1
		4.5	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OL} = 24 \text{mA}$		0.36	0.44	
		5.5	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OL} = 24 \text{mA}^{(4)}$		0.36	0.44	
I _{IN}	Maximum Input Leakage Current	5.5	$V_I = V_{CC}, \text{ GND}$		±0.1	±1.0	μA
I _{OZ}	Maximum 3-STATE Leakage Current	5.5	$V_{I} = V_{IL}, V_{IH};$ $V_{O} = V_{CC}, \text{ GND}$		±0.25	±2.5	μA
I _{CCT}	Maximum I _{CC} /Input	5.5	$V_I = V_{CC} - 2.1V$	0.6		1.5	mA
I _{OLD}	Minimum Dynamic	5.5	V _{OLD} = 1.65V Max.			75	mA
I _{OHD}	Output Current ⁽⁵⁾	5.5	V _{OHD} = 3.85V Min.			-75	mA
I _{CC}	Maximum Quiescent Supply Current	5.5	$V_{IN} = V_{CC}$ or GND		4.0	40.0	μA

Notes:

4. All outputs loaded; thresholds on input associated with output under test.

5. Maximum test duration 2.0ms, one output loaded at a time.

			T _A = +25°C, C _L = 50pF			$\begin{bmatrix} T_A = -40^{\circ} \\ C_L = \end{bmatrix}$		
Symbol	Parameter	V _{CC} (V) ⁽⁶⁾	Min.	Тур.	Max.	Min.	Max.	Units
f _{MAX}	Maximum Clock Frequency	3.3	60	110		60		MHz
		5.0	100	155		100		
t _{PLH}	Propagation Delay,	3.3	3.0	11.0	13.5	1.5	15.5	ns
	CP to O _n	5.0	2.5	8.0	9.5	1.5	10.5	
t _{PHL}	Propagation Delay, CP to O _n	3.3	2.5	10.0	12.5	2.0	14.0	ns
		5.0	2.0	7.0	9.0	1.5	10.0	
t _{PZH}	Output Enable Time	3.3	3.0	9.5	11.5	1.5	13.0	ns
		5.0	2.0	7.0	8.5	1.0	9.5	
t _{PZL}	Output Enable Time	3.3	2.5	9.0	11.5	1.5	13.0	ns
		5.0	2.0	6.5	8.5	1.0	9.5	
t _{PHZ}	Output Disable Time	3.3	3.0	10.5	12.5	2.0	14.5	ns
		5.0	2.0	8.0	11.0	2.0	12.5	
t _{PLZ}	Output Disable Time	3.3	2.0	8.0	11.5	1.0	12.5	ns
		5.0	1.5	6.5	8.5	1.0	10.0	

AC Electrical Characteristics for AC

Note:

6. Voltage range 3.3 is 3.3V \pm 0.3V. Voltage range 5.0 is 5.0V \pm 0.5V.

AC Operating Requirements for AC

			T _A = +25°C, C _L = 50pF		$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C,$ $C_{L} = 50pF$	
Symbol	Parameter	V _{CC} (V) ⁽⁷⁾	Тур.	Gu	aranteed Minimum	Units
t _S	Setup Time, HIGH or LOW,	3.3	2.0	5.5	6.0	ns
	D _n to CP	5.0	1.0	4.0	4.5	
t _H	Hold Time, HIGH or LOW,	3.3	-1.0	1.0	1.0	ns
	D _n to CP	5.0	0	1.5	1.5	
t _W	CP Pulse Width, HIGH or LOW	3.3	4.0	5.5	6.0	ns
		5.0	2.5	4.0	4.5	1

Note:

7. Voltage range 3.3 is 3.3V \pm 0.3V. Voltage range 5.0 is 5.0V \pm 0.5V.

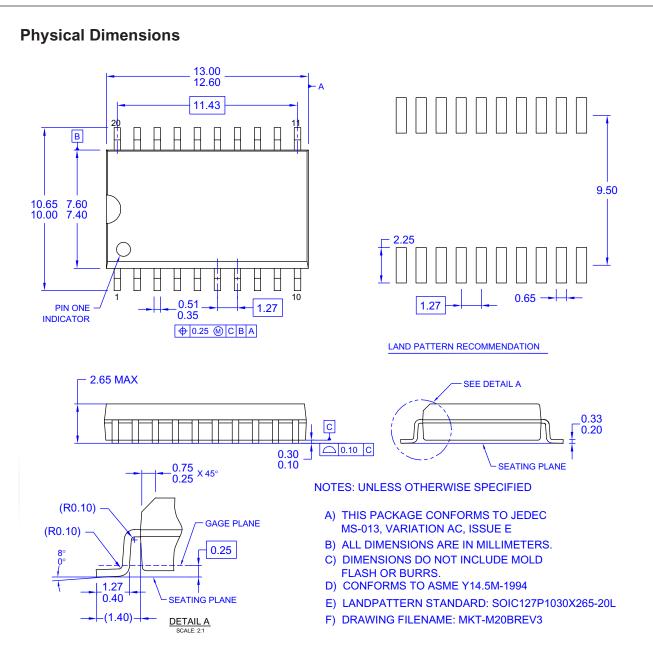
AC Electrical Characteristics for ACT

			T _A = +25°C, C _L = 50pF		$T_A = -40^{\circ}C_L =$			
Symbol	Parameter	V _{CC} (V) ⁽⁸⁾	Min.	Тур.	Max.	Min.	Max.	Units
f _{MAX}	Maximum Clock Frequency	5.0	100	160		90		MHz
t _{PLH}	Propagation Delay, CP to O _n	5.0	2.0	8.5	10.0	2.0	11.5	ns
t _{PHL}	Propagation Delay, CP to O _n	5.0	2.0	8.0	9.5	1.5	11.0	ns
t _{PZH}	Output Enable Time	5.0	2.0	8.0	9.5	1.5	10.5	ns
t _{PZL}	Output Enable Time	5.0	1.5	8.0	9.0	1.5	10.5	ns
t _{PHZ}	Output Disable Time	5.0	1.5	8.5	11.5	1.0	12.5	ns
t _{PLZ}	Output Disable Time	5.0	1.5	7.0	8.5	1.0	10.0	ns

Note:

8. Voltage range 5.0 is 5.0V \pm 0.5V.

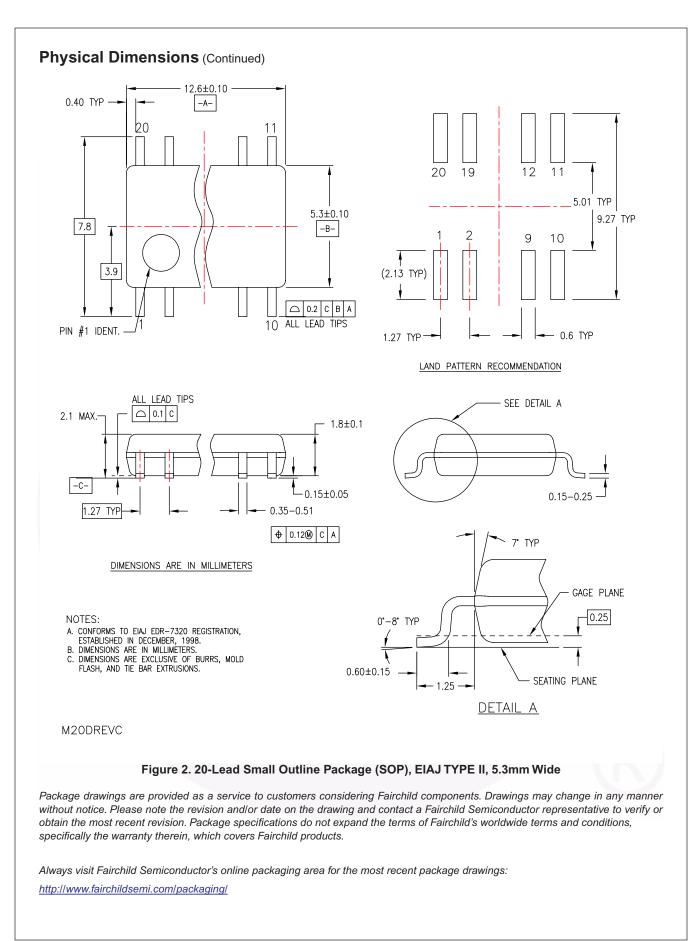
AC Operating Requirements for ACT

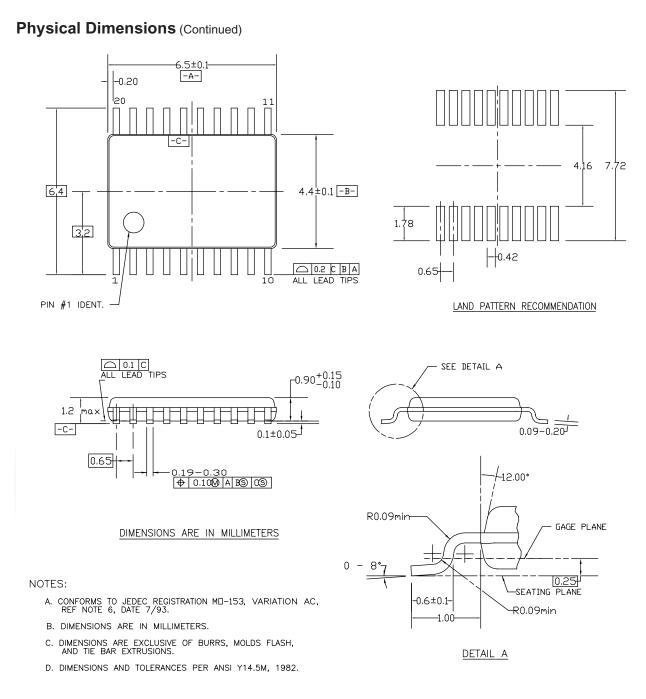

				T _A = + C _L =	-25°C, 50pF	$\label{eq:T_A} \begin{split} T_A &= -40^\circ C \text{ to } +85^\circ C,\\ C_L &= 50 p F \end{split}$	
Symbol	Parameter	v V	(V) ⁽⁹⁾	Тур.	Gua	aranteed Minimum	Units
t _S	Setup Time, HIGH or LOW, D _n to CP		5.0	1.0	5.5	5.5	ns
t _H	Hold Time, HIGH or LOW, D _n to CP		5.0	0	1.5	1.5	ns
t _W	CP Pulse Width, HIGH or LOW		5.0	2.5	5.0	5.0	ns

Note:

9. Voltage range 5.0 is $5.0V \pm 0.5V$.

Capacitance


Symbol	Parameter	Conditions	Тур.	Units
C _{IN}	Input Capacitance	V _{CC} = OPEN	4.5	pF

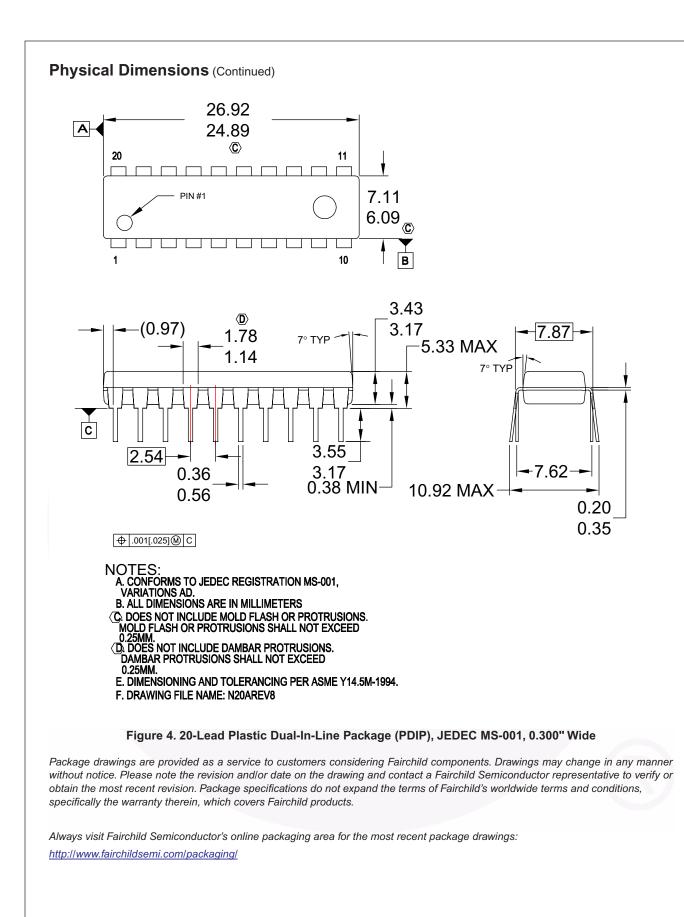

Figure 1. 20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide

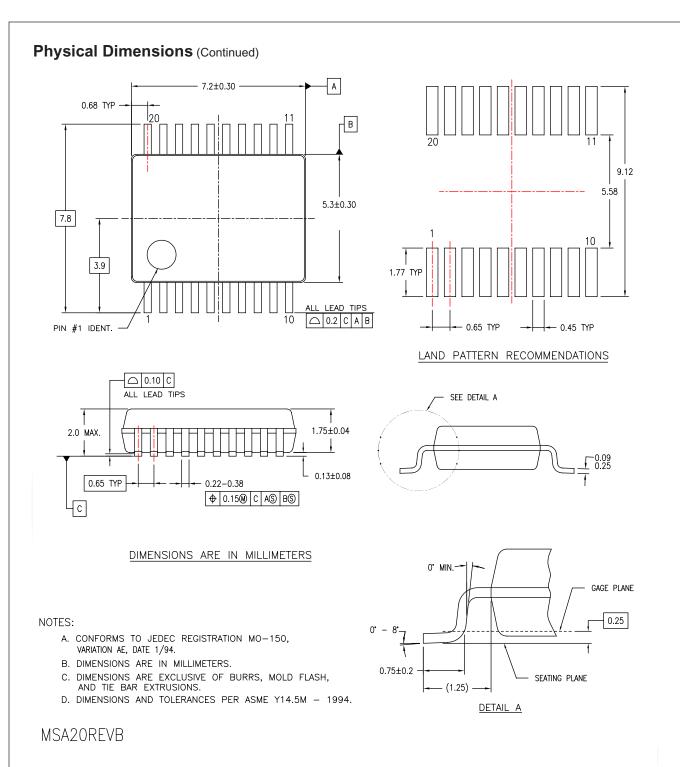
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/

10

74AC374, 74ACT374 — Octal D-Type Flip-Flop with 3-STATE Outputs


MTC20REVD1


Figure 3. 20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/packaging/

Figure 5. 20-Lead Shrink Small Outline Package (SSOP), JEDEC MO-150, 5.3mm Wide

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/packaging/

74AC374, 74ACT374 — Octal D-Type Flip-Flop with 3-STATE Outputs

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

ACEx [®] Build it Now™ CorePLUS™ <i>CROSSVOLT</i> ™ CTL™ Current Transfer Logic™ EcoSPARK [®] EZSWITCH™ * Fairchild [®] Fairchild [®] Fairchild [®] Fairchild [®] Fairchild [®] Fairchild Semiconductor [®] FACT Quiet Series™ FACT [®] FAST [®] FastvCore™ FlashWriter [®] *	FPS™ FRFET® Global Power Resource™ Green FPS™ Green FPS™ e-Series™ GTO™ <i>i-Lo</i> ™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MillerDrive™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR®	PDP-SPM [™] Power220 [®] Power247 [®] POWEREDGE [®] Power-SPM [™] PowerTrench [®] Programmable Active Droop [™] QFET [®] QS [™] QT Optoelectronics [™] Quiet Series [™] RapidConfigure [™] SMART START [™] SMART START [™] SPM [®] STEALTH [™] SuperFET [™] SuperSOT [™] -8	SyncFET™ Figereral The Power Franchise® TinyBoost™ TinyBoost™ TinyBuck™ TinyLogic® TINYOPTO™ TinyPOwer™ TinyPWM™ TinyWire™ µSerDes™ UHC® Ultra FRFET™ UniFET™ VCX™
--	--	--	---

* EZSWITCH™ and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Datasheet Identification	Product Status	Definition	
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.	
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.	
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improv the design.	
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.	

PRODUCT STATUS DEFINITIONS

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for ON Semiconductor manufacturer:

Other Similar products are found below :

1.5SMC82AT3G 74LCX574WM FST3126MX MC78L08ACP MMBTA42 FDD8424H_F085A NTZD3154NT1H KSA1015GRTA BAT42XV2 007851X 702607H MC33079DG MC34072DR2G MC34151P MC78L08ACDG 74VHC14MX 74VHC541MTCX FAN3111ESX FDMC86262P FDMD8530 FEBFL7733A_L53U021A FEBFOD8333 MM74HC138MX MMBZ5233B FOD3120SD FPAB30BH60B FQP2N80 1.5KE16AG MT9V115EBKSTCH-GEVB NB6L295MNGEVB NB7L1008MNGEVB NC7WZ126K8X NCL30000LED2GEVB NCN9252MUGEVB NCP1075PSRGEVB NCV4274CDT33RKG NCV887100D1R2G NDT2955 1N5339B NSIC2030JBT3G NV890231MWTXGEVB CAT4101AEVB KA7818ETU S3JB 2SC5569-TD-E FEBFL7734_L55L008A 1V5KE39CA FNB33060T AMIS30422DBGEVB AMIS3062XGEVK