ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

ON Semiconductor®

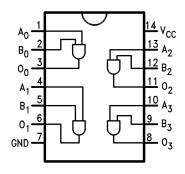
74AC08, 74ACT08 **Quad 2-Input AND Gate**

Features

General Description

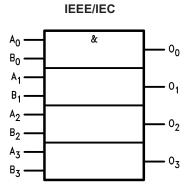
- The AC08/ACT08 contains four, 2-input AND gates. ■ I_{CC} reduced by 50% on 74AC only
- Outputs source/sink 24mA

Ordering Information


Order Number	Package Number	Package Description
74AC08SC	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
74AC08SJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74AC08MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74AC08PC	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
74ACT08SC	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
74ACT08MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74ACT08PC	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering number.

All packages are lead free per JEDEC: J-STD-020B standard.


Connection Diagram

Pin Description

Pin Names	Description
A _n , B _n	Inputs
O _n	Outputs

Logic Symbol

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	-0.5V to +7.0V
I _{IK}	DC Input Diode Current	
	$V_{I} = -0.5V$	–20mA
	$V_{I} = V_{CC} + 0.5$	+20mA
V _I	DC Input Voltage	-0.5V to V _{CC} + 0.5V
I _{OK}	DC Output Diode Current	
	$V_{O} = -0.5V$	–20mA
	$V_{O} = V_{CC} + 0.5V$	+20mA
V _O	DC Output Voltage	-0.5V to V _{CC} + 0.5V
Io	DC Output Source or Sink Current	±50mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current per Output Pin	±50mA
T _{STG}	Storage Temperature	–65°C to +150°C
TJ	Junction Temperature	140°C

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. ON Semiconductor does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	
	AC	2.0V to 6.0V
	ACT	4.5V to 5.5V
VI	Input Voltage	0V to V _{CC}
V _O	Output Voltage	0V to V _{CC}
T _A	Operating Temperature	-40°C to +85°C
ΔV / Δt	Minimum Input Edge Rate, AC Devices:	125mV/ns
	$\rm V_{IN}$ from 30% to 70% of $\rm V_{CC}, \rm V_{CC}$ @ 3.3V, 4.5V, 5.5V	
ΔV / Δt	Minimum Input Edge Rate, ACT Devices:	125mV/ns
	V _{IN} from 0.8V to 2.0V, V _{CC} @ 4.5V, 5.5V	

DC Electrical Characteristics for AC

		V _{CC}		T _A = -	+25°C	T _A = -40°C to +85°C		
Symbol	Parameter	(V)	Conditions	Тур.	Typ. Guaranteed Limits		Units	
V _{IH}	Minimum HIGH Level	3.0	$V_{OUT} = 0.1V$ or	1.5	2.1	2.1	V	
	Input Voltage	4.5	V _{CC} – 0.1V	2.25	3.15	3.15		
		5.5		2.75	3.85	3.85		
V _{IL}	Maximum LOW Level	3.0	$V_{OUT} = 0.1V$ or	1.5	0.9	0.9	V	
	Input Voltage	4.5	V _{CC} – 0.1V	2.25	1.35	1.35		
		5.5		2.75	1.65	1.65		
V _{OH}	Minimum HIGH Level	3.0	$I_{OUT} = -50\mu A$	2.99	2.9	2.9	V	
	Output Voltage	4.5		4.49	4.4	4.4		
		5.5		5.49	5.4	5.4		
		3.0	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OH} = -12\text{mA}$		2.56	2.46		
		4.5	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OH} = -24\text{mA}$		3.86	3.76		
		5.5	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OH} = -24\text{mA}^{(1)}$		4.86	4.76		
V _{OL}	Maximum LOW Level	3.0	$I_{OUT} = 50\mu A$	0.002	0.1	0.1	V	
	Output Voltage	4.5		0.001	0.1	0.1		
		5.5		0.001	0.1	0.1		
		3.0	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OL} = 12\text{mA}$		0.36	0.44		
		4.5	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OL} = 24\text{mA}$		0.36	0.44		
		5.5	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OL} = 24\text{mA}^{(1)}$		0.36	0.44		
I _{IN} ⁽³⁾	Maximum Input Leakage Current	5.5	$V_I = V_{CC}$, GND		±0.1	±1.0	μA	
I _{OLD}	Minimum Dynamic	5.5	V _{OLD} = 1.65V Max.			75	mA	
I _{OHD}	Output Current ⁽²⁾	5.5	V _{OHD} = 3.85V Min.			- 75	mA	
I _{CC} ⁽³⁾	Maximum Quiescent Supply Current	5.5	$V_{IN} = V_{CC}$ or GND		2.0	20.0	μA	

Notes:

- 1. All outputs loaded; thresholds on input associated with output under test.
- 2. Maximum test duration 2.0ms, one output loaded at a time.
- 3. I_{IN} and I_{CC} @ 3.0V are guaranteed to be less than or equal to the respective limit @ 5.5V V_{CC} .

DC Electrical Characteristics for ACT

	V _{CC} T _A = +25°C		+25°C	T _A = -40°C to +85°C	;		
Symbol	Parameter	(V)	Conditions	Тур.	G	Guaranteed Limits	Units
V _{IH}	Minimum HIGH Level	4.5	$V_{OUT} = 0.1V$ or	1.5	2.0	2.0	V
	Input Voltage	5.5	V _{CC} – 0.1V	1.5	2.0	2.0	
V _{IL}	Maximum LOW Level	4.5	$V_{OUT} = 0.1V$ or	1.5	0.8	0.8	V
	Input Voltage	5.5	V _{CC} – 0.1V	1.5	0.8	0.8	
V _{OH}	Minimum HIGH Level	4.5	$I_{OUT} = -50\mu A$	4.49	4.4	4.4	V
	Output Voltage	5.5		5.49	5.4	5.4	
		4.5	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OH} = -24\text{mA}$		3.86	3.76	
		5.5	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OH} = -24\text{mA}^{(4)}$		4.86	4.76	
V _{OL}	Maximum LOW Level	4.5	I _{OUT} = 50μA	0.001	0.1	0.1	V
	Output Voltage	5.5		0.001	0.1	0.1	
		4.5	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OL} = 24\text{mA}$		0.36	0.44	
		5.5	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OL} = 24\text{mA}^{(4)}$		0.36	0.44	
I _{IN}	Maximum Input Leakage Current	5.5	$V_I = V_{CC}$, GND		±0.1	±1.0	μA
I _{CCT}	Maximum I _{CC} /Input	5.5	$V_I = V_{CC} - 2.1V$	0.6		1.5	mA
I _{OLD}	Minimum Dynamic	5.5	V _{OLD} = 1.65V Max.			75	mA
I_{OHD}	Output Current ⁽⁵⁾	5.5	V _{OHD} = 3.85V Min.			– 75	mA
I _{CC}	Maximum Quiescent Supply Current	5.5	$V_{IN} = V_{CC}$ or GND		4.0	40.0	μA

Notes:

- 4. All outputs loaded; thresholds on input associated with output under test.
- 5. Maximum test duration 2.0ms, one output loaded at a time.

AC Electrical Characteristics for AC

			T _A = +25°C, C _L = 50pF		$T_A = -40$ °C to +85°C, $C_L = 50$ pF			
Symbol	Parameter	$V_{CC}(V)^{(6)}$	Min.	Тур.	Max.	Min.	Max.	Units
t _{PLH}	Propagation Delay	3.3	1.5	7.5	9.5	1.0	10.0	ns
		5.0	1.5	5.5	7.5	1.0	8.5	
t _{PHL}	Propagation Delay	3.3	1.5	7.0	8.5	1.0	9.0	ns
		5.0	1.5	5.5	7.0	1.0	7.5	

Note:

6. Voltage range 3.3 is 3.3V \pm 0.3V. Voltage range 5.0 is 5.0V \pm 0.5V.

AC Electrical Characteristics for ACT

			T _A = +25°C, C _L = 50pF		$T_A = -40$ °C to +85°C, $C_L = 50$ pF			
Symbol	Parameter	$V_{CC}(V)^{(7)}$	Min.	Тур.	Max.	Min.	Max.	Units
t _{PLH}	Propagation Delay	5.0	1.0	6.5	9.0	1.0	10.0	ns
t _{PHL}	Propagation Delay	5.0	1.0	6.5	9.0	1.0	10.0	ns

Note:

7. Voltage range 5.0 is $5.0V \pm 0.5V$.

Capacitance

Symbol	Parameter	Conditions	Тур.	Units
C _{IN}	Input Capacitance	V _{CC} = OPEN	4.5	pF
C _{PD}	Power Dissipation Capacitance	V _{CC} = 5.0V	20.0	pF

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hol

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Phone: 421 33 790 2910

Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Logic Gates category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

 74HC85N
 NLUIG32AMUTCG
 CD4068BE
 NL17SG32P5T5G
 NL17SG86DFT2G
 NLV14001UBDR2G
 NLX1G11AMUTCG

 NLX1G97MUTCG
 74LS38
 74LVC32ADTR2G
 MC74HCT20ADTR2G
 NLV17SZ00DFT2G
 NLV17SZ02DFT2G
 NLV74HC02ADR2G

 74HC32S14-13
 74LS133
 74LVC1G32Z-7
 M38510/30402BDA
 74LVC1G86Z-7
 74LVC2G08RA3-7
 NLV74HC08ADTR2G

 NLV74HC14ADR2G
 NLV74HC20ADR2G
 NLX2G86MUTCG
 5962-8973601DA
 74LVC2G02HD4-7
 NLU1G00AMUTCG

 74LVC2G32RA3-7
 74LVC2G00HD4-7
 NL17SG02P5T5G
 74LVC2G00HK3-7
 74LVC2G86HK3-7
 NLX1G99DMUTWG

 NLV7HC1G00DFT2G
 NLV1G08DFT2G
 NLV7SZ57DFT2G
 NLV74VHC04DTR2G
 NLV27WZ86USG
 NLV27WZ00USG

 NLU1G86CMUTCG
 NLU1G08CMUTCG
 NL17SZ32P5T5G
 NL17SZ00P5T5G
 NL17SH02P5T5G
 74AUP2G00RA3-7

 NLV74HC02ADTR2G
 NLX1G332CMUTCG
 NL17SG86P5T5G
 NL17SZ05P5T5G
 NLV74VHC00DTR2G