74AC299, 74ACT299
 8-Input Universal Shift/Storage Register with Common Parallel I/O Pins

Features

- $I_{C C}$ and $I_{O Z}$ reduced by 50%
- Common parallel I/O for reduced pin count
- Additional serial inputs and outputs for expansion

■ Four operating modes: shift left, shift right, load and store
■ 3-STATE outputs for bus-oriented applications

- Outputs source/sink 24 mA
- ACT299 has TTL-compatible inputs

General Description

The AC/ACT299 is an 8-bit universal shift/storage register with 3-STATE outputs. Four modes of operation are possible: hold (store), shift left, shift right and load data. The parallel load inputs and flip-flop outputs are multiplexed to reduce the total number of package pins. Additional outputs are provided for flip-flops Q_{0}, Q_{7} to allow easy serial cascading. A separate active LOW Master Reset is used to reset the register.

Ordering Information

Order Number	Package Number	Package Description
74AC299SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74AC299SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74AC299MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74AC299PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
74ACT299SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74ACT299MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74ACT299PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Device also available in Tape and Reel. Specify by appending suffix letter " X " to the ordering number.
All packages are lead free per JEDEC: J-STD-020B standard.

Connection Diagram

Pin Description

Pin Names	Description
CP	Clock Pulse Input
DS_{0}	Serial Data Input for Right Shift
DS_{7}	Serial Data Input for Left Shift
$\mathrm{S}_{0}, \mathrm{~S}_{1}$	Mode Select Inputs
$\overline{\mathrm{MR}}$	Asynchronous Master Reset
$\overline{\mathrm{OE}}_{1}, \overline{\mathrm{OE}}_{2}$	3-STATE Output Enable Inputs
$\mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{7}$	Parallel Data Inputs or 3-STATE Parallel Outputs
$\mathrm{Q}_{0}, \mathrm{Q}_{7}$	Serial Outputs

Functional Description

The AC/ACT299 contains eight edge-triggered D-type flip-flops and the interstage logic necessary to perform synchronous shift left, shift right, parallel load and hold operations. The type of operation is determined by S_{0} and S_{1}, as shown in the Truth Table. All flip-flop outputs are brought out through 3-STATE buffers to separate I/O pins that also serve as data inputs in the parallel load mode. Q_{0} and Q_{7} are also brought out on other pins for expansion in serial shifting of longer words.
A LOW signal on $\overline{M R}$ overrides the Select and CP inputs and resets the flip-flops. All other state changes are initiated by the rising edge of the clock. Inputs can change when the clock is in either state provided only that the recommended setup and hold times, relative to the rising edge of CP, are observed.
A HIGH signal on either $\overline{\mathrm{OE}}_{1}$ or $\overline{\mathrm{OE}}_{2}$ disables the 3-STATE buffers and puts the I/O pins in the high impedance state. In this condition the shift, hold, load and reset operations can still occur. The 3-STATE buffers are also disabled by HIGH signals on both S_{0} and S_{1} in preparation for a parallel load operation.

Logic Symbols

IEEE/IEC

Truth Table

Inputs				Response
$\overline{\mathrm{MR}}$	S_{1}	S_{0}	CP	
L	X	X	X	Asynchronous Reset; $Q_{0}-Q_{7}=L O W$
H	H	H	\sim	Parallel Load; $\mathrm{I} / \mathrm{O}_{\mathrm{n}} \rightarrow \mathrm{Q}_{\mathrm{n}}$
H	L	H	-	Shift Right; $\mathrm{DS}_{0} \rightarrow \mathrm{Q}_{0}, \mathrm{Q}_{0} \rightarrow \mathrm{Q}_{1}$, etc.
H	H	L	\sim	Shift Left, $D_{7} \rightarrow Q_{7}, Q_{7} \rightarrow Q_{6}$, etc.
H	L	L	X	Hold

[^0]
Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
V_{CC}	Supply Voltage	-0.5 V to +7.0 V
$\mathrm{I}_{\text {IK }}$	DC Input Diode Current $V_{I}=-0.5 \mathrm{~V}$	-20mA
	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}+0.5$	$+20 \mathrm{~mA}$
V_{1}	DC Input Voltage	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
$\mathrm{IOK}^{\text {I }}$	DC Output Diode Current $\mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V}$	-20mA
	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	$+20 \mathrm{~mA}$
V_{O}	DC Output Voltage	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
I_{0}	DC Output Source or Sink Current	$\pm 50 \mathrm{~mA}$
$\mathrm{I}_{\text {CC }}$ or $\mathrm{I}_{\text {GND }}$	DC $\mathrm{V}_{\text {CC }}$ or Ground Current per Output Pin	$\pm 50 \mathrm{~mA}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
T_{J}	Junction Temperature	$140^{\circ} \mathrm{C}$

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Rating
V_{CC}	Supply Voltage (unless otherwise specified) AC	2.0 V to 6.0 V
	ACT	4.5 V to 5.5 V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage	0 V to V_{CC}
V_{O}	Output Voltage	0 V to V_{CC}
T_{A}	Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\Delta \mathrm{V} / \Delta \mathrm{t}$	Minimum Input Edge Rate, AC Devices: $\mathrm{V}_{\text {IN }}$ from 30\% to 70% of $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}} @ 3.3 \mathrm{~V}, 4.5 \mathrm{~V}, 5.5 \mathrm{~V}$	$125 \mathrm{mV} / \mathrm{ns}$
$\Delta \mathrm{V} / \Delta \mathrm{t}$	Minimum Input Edge Rate, ACT Devices: $V_{\text {IN }}$ from 0.8 V to $2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}} @ 4.5 \mathrm{~V}, 5.5 \mathrm{~V}$	$125 \mathrm{mV} / \mathrm{ns}$

DC Electrical Characteristics for AC

Symbol	Parameter	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$	Conditions	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units
				Typ.		uaranteed Limits	
V_{IH}	Minimum HIGH Level Input Voltage	3.0	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0.1 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$	1.5	2.1	2.1	V
		4.5		2.25	3.15	3.15	
		5.5		2.75	3.85	3.85	
$\mathrm{V}_{\text {IL }}$	Maximum LOW Level Input Voltage	3.0	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0.1 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$	1.5	0.9	0.9	V
		4.5		2.25	1.35	1.35	
		5.5		2.75	1.65	1.65	
V_{OH}	Minimum HIGH Level Output Voltage	3.0	$\mathrm{I}_{\text {OUT }}=-50 \mu \mathrm{~A}$	2.99	2.9	2.9	V
		4.5		4.49	4.4	4.4	
		5.5		5.49	5.4	5.4	
		3.0	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \end{aligned}$		2.56	2.46	
		4.5	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \end{aligned}$		3.86	3.76	
		5.5	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}^{(1)} \end{aligned}$		4.86	4.76	
V_{OL}	Maximum LOW Level Output Voltage	3.0	$\mathrm{I}_{\text {OUT }}=50 \mu \mathrm{~A}$	0.002	0.1	0.1	V
		4.5		0.001	0.1	0.1	
		5.5		0.001	0.1	0.1	
		3.0	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \end{aligned}$		0.36	0.44	
		4.5	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \end{aligned}$		0.36	0.44	
		5.5	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}^{(1)} \end{aligned}$		0.36	0.44	
$\mathrm{I}_{\mathrm{IN}}{ }^{(2)}$	Maximum Input Leakage Current	5.5	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$		± 0.1	± 1.0	$\mu \mathrm{A}$
IOLD	Minimum Dynamic Output Current ${ }^{(3)}$	5.5	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max.			75	mA
$\mathrm{I}_{\text {OHD }}$		5.5	$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ Min.			-75	mA
$\mathrm{I}_{\mathrm{CC}}{ }^{(2)}$	Maximum Quiescent Supply Current	5.5	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND		4.0	40.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {Ozt }}$	Maximum I/O Leakage Current	5.5	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}(\mathrm{OE})=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{IH}} ; \\ & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, G N D ; \\ & \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \\ & \hline \end{aligned}$		± 0.3	± 3.0	$\mu \mathrm{A}$

Notes:

1. All outputs loaded; thresholds on input associated with output under test.
2. I_{IN} and $\mathrm{I}_{\mathrm{CC}} @ 3.0 \mathrm{~V}$ are guaranteed to be less than or equal to the respective limit @ $5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$.
3. Maximum test duration 2.0 ms , one output loaded at a time.

DC Electrical Characteristics for ACT

Symbol	Parameter	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$	Conditions	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units
				Typ.		uaranteed Limits	
V_{IH}	Minimum HIGH Level Input Voltage	4.5	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$	1.5	2.0	2.0	V
		5.5		1.5	2.0	2.0	
V_{IL}	Maximum LOW Level Input Voltage	4.5	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0.1 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$	1.5	0.8	0.8	V
		5.5		1.5	0.8	0.8	
V_{OH}	Minimum HIGH Level Output Voltage	4.5	$\mathrm{I}_{\text {OUT }}=-50 \mu \mathrm{~A}$	4.49	4.4	4.4	V
		5.5		5.49	5.4	5.4	
		4.5	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \end{aligned}$	0.0001	3.86	3.76	
		5.5	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}^{(4)} \end{aligned}$		4.86	4.76	
V_{OL}	Maximum LOW Level Output Voltage	4.5	$\mathrm{I}_{\text {OUT }}=50 \mu \mathrm{~A}$	0.001	0.1	0.1	V
		5.5		0.001	0.1	0.1	
		4.5	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \end{aligned}$		0.36	0.44	
		5.5	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}^{(4)} \end{aligned}$		0.36	0.44	
I_{IN}	Maximum Input Leakage Current	5.5	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$		± 0.1	± 1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {CCT }}$	Maximum $\mathrm{ICC}^{\text {/lnput }}$	5.5	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$	0.6		1.5	mA
IOLD	Minimum Dynamic Output Current ${ }^{(5)}$	5.5	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max.			75	mA
$\mathrm{I}_{\text {OHD }}$		5.5	$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ Min.			-75	mA
I_{CC}	Maximum Quiescent Supply Current	5.5	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND		4.0	40.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OZT }}$	Maximum I/O Leakage Current	5.5	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{I}}(\mathrm{OE})=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{IH}} ; \\ & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, G N D ; \\ & \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, G N D \\ & \hline \end{aligned}$		± 0.3	± 3.0	$\mu \mathrm{A}$

Notes:
4. All outputs loaded; thresholds on input associated with output under test.
5. Maximum test duration 2.0 ms , one output loaded at a time.

AC Electrical Characteristics for AC

Symbol	Parameter	$\mathrm{V}_{\mathrm{CC}}(\mathrm{V})^{(6)}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
			Min.	Typ.	Max.	Min.	Max.	
$\mathrm{f}_{\text {MAX }}$	Maximum Input Frequency	3.3	90	124		80		MHz
		5.0	130	173		105		
$\mathrm{t}_{\text {PLH }}$	Propagation Delay, $C P$ to Q_{0} or Q_{7} (Shift Left or Right)	3.3	8.5	14.0	20.5	7.0	22.0	ns
		5.0	5.5	9.5	14.0	4.5	15.0	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay, CP to Q_{0} or Q_{7} (Shift Left or Right)	3.3	8.5	14.5	21.5	7.0	23.0	ns
		5.0	5.5	10.0	14.5	5.0	16.0	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay, $\overline{\mathrm{CP}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	3.3	9.0	14.5	20.5	7.5	22.5	ns
		5.0	6.0	10.0	14.5	5.0	16.0	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay, $\overline{\mathrm{CP}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	3.3	10.0	16.0	23.0	8.5	24.5	ns
		5.0	6.5	11.0	16.0	6.0	17.5	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay, $\overline{\mathrm{MR}}$ to Q_{0} or Q_{7}	3.3	9.0	15.5	22.5	7.5	25.0	ns
		5.0	5.5	10.5	15.5	5.0	17.0	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay, $\overline{\mathrm{MR}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	3.3	9.0	15.0	21.5	7.5	24.0	ns
		5.0	5.5	10.0	15.0	5.0	16.5	
$\mathrm{t}_{\text {PZH }}$	Output Enable Time, $\overline{\mathrm{OE}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	3.3	7.0	12.0	18.0	6.0	19.5	ns
		5.0	4.5	8.5	12.5	4.0	13.5	
$\mathrm{t}_{\text {PZL }}$	Output Enable Time, $\overline{\mathrm{OE}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	3.3	7.0	12.5	18.0	6.0	20.5	ns
		5.0	5.0	8.0	12.5	4.0	14.0	
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time, $\overline{\mathrm{OE}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	3.3	6.5	13.0	18.5	5.5	19.5	ns
		5.0	3.5	9.5	14.0	3.0	15.0	
$t_{\text {PLZ }}$	Output Disable Time, $\overline{\mathrm{OE}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	3.3	5.5	11.5	17.0	4.5	19.0	ns
		5.0	3.5	8.0	12.5	2.0	13.5	

Note:
6. Voltage range 3.3 is $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$. Voltage range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$.

AC Operating Requirements for AC

Symbol	Parameter	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})^{(7)}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$	Units
			Typ.	Guaranteed Minimum		
t_{s}	Setup Time, HIGH or LOW,	3.3	3.0	8.0	8.5	ns
	S_{0} or S_{1} to CP	5.0	2.0	5.0	5.5	
$t_{\text {H }}$	Hold Time, HIGH or LOW, S_{0} or S_{1} to CP	3.3	-3.0	0.5	0.5	ns
		5.0	-1.5	1.0	1.0	
t_{s}	Setup Time, HIGH or LOW, $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$ to CP	3.3	2.0	5.5	6.0	ns
		5.0	1.0	3.5	4.0	
t_{H}	Hold Time, HIGH or LOW, $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$ to CP	3.3	-2.0	0	0	ns
		5.0	-1.0	1.0	1.0	
t_{s}	Setup Time, HIGH or LOW, DS_{0} or DS_{7} to CP	3.3	2.5	6.5	7.0	ns
		5.0	1.5	4.0	4.5	
t_{H}	Hold Time, HIGH or LOW, DS_{0} or DS_{7} to CP	3.3	-2.0	0	0.5	ns
		5.0	-1.0	1.0	1.0	
t_{W}	CP Pulse Width, LOW	3.3	3.5	4.5	5.0	ns
		5.0	2.0	3.5	3.5	
$t_{\text {w }}$	$\overline{\mathrm{MR}}$ Pulse Width, LOW	3.3	4.0	4.5	5.0	ns
		5.0	2.0	3.5	3.5	
$t_{\text {REC }}$	Recovery Time, $\overline{\mathrm{MR}}$ to CP	3.3	0	1.5	1.5	ns
		5.0	0.5	1.5	1.5	

Note:

7. Voltage range 3.3 is $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$. Voltage range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$.

AC Electrical Characteristics for ACT

Symbol	Parameter	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})^{(8)}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}, \\ \mathrm{C}=50 \mathrm{pF} \end{gathered}$		Units
			Min.	Typ.	Max.	Min.	Max.	
$\mathrm{f}_{\text {MAX }}$	Maximum Input Frequency	5.0	120	170		110		MHz
$t_{\text {PLH }}$	Propagation Delay, $C P$ to Q_{0} or Q_{7} (Shift Left or Right)	5.0	4.0	8.5	12.5	3.0	14.0	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay, $C P$ to Q_{0} or Q_{7} (Shift Left or Right)	5.0	4.0	9.0	13.5	3.5	15.0	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay, CP to I/On	5.0	4.5	8.5	12.5	4.5	13.5	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay, CP to I/On	5.0	5.0	9.5	15.0	4.5	16.5	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay, $\overline{M R}$ to Q_{0} or Q_{7}	5.0	4.0	14.0	15.0	4.0	18.0	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay, $\overline{\mathrm{MR}}$ to I/ O_{n}	5.0	4.0	13.0	14.5	3.5	17.5	ns
$t_{\text {PZH }}$	Output Enable Time, $\overline{\mathrm{OE}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	5.0	2.5	8.0	12.0	1.5	13.0	ns
$t_{\text {PZL }}$	Output Enable Time, $\overline{\mathrm{OE}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	5.0	2.0	8.0	12.0	1.5	13.5	ns
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time, $\overline{\mathrm{OE}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	5.0	2.0	8.5	12.5	2.0	13.5	ns
$t_{\text {PLZ }}$	Output Disable Time, $\overline{\mathrm{OE}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	5.0	2.5	8.0	11.5	2.0	12.5	ns

Note

8. Voltage range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$.

AC Operating Requirements for ACT

Symbol	Parameter	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})^{(9)}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$	Units
			Typ.	Guaranteed Minimum		
t_{s}	Setup Time, HIGH or LOW, S_{0} or S_{1} to CP	5.0	2.0	5.0	5.5	ns
t_{H}	Hold Time, HIGH or LOW, S_{0} or S_{1} to CP	5.0	-2.0	1.0	1.0	ns
t_{s}	Setup Time, HIGH or LOW, I/O O_{n} to CP	5.0	1.5	4.0	4.5	ns
t_{H}	Hold Time, HIGH or LOW, I/O $\mathrm{O}_{\text {n }}$ to CP	5.0	-1.0	1.0	1.0	ns
t_{s}	Setup Time, HIGH or LOW, DS_{0} or DS_{7} to CP	5.0	1.5	4.5	5.0	ns
t_{H}	Hold Time, HIGH or LOW, DS_{0} or DS_{7} to CP	5.0	-1.0	1.0	1.0	ns
$t_{\text {w }}$	CP Pulse Width, HIGH or LOW	5.0	2.0	4.0	4.5	ns
$t_{\text {w }}$	$\overline{\mathrm{MR}}$ Pulse Width, LOW	5.0	2.0	3.5	3.5	ns
$\mathrm{t}_{\text {REC }}$	Recovery Time, $\overline{\mathrm{MR}}$ to CP	5.0	0	1.5	1.5	ns

Note

9. Voltage range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$.

Capacitance

Symbol	Parameter	Conditions	Typ.	Units
$\mathrm{C}_{I N}$	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	4.5	pF
C_{PD}	Power Dissipation Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	170	pF

Physical Dimensions

LAND PATTERN RECOMMENDATION

NOTES: UNLESS OTHERWISE SPECIFIED
A) THIS PACKAGE CONFORMS TO JEDEC MS-013, VARIATION AC, ISSUE E
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DIMENSIONS DO NOT INCLUDE MOLD FLASH OR BURRS.
D) CONFORMS TO ASME Y14.5M-1994
E) LANDPATTERN STANDARD: SOIC127P1030X265-20L
F) DRAWING FILENAME: MKT-M20BREV3

Figure 1. 20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision andlor date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/packaging/

Physical Dimensions (Continued)

LAND PATTERN RECOMMENDATION

M20DREVC

Figure 2. 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/packagingl

Physical Dimensions (Continued)

mTC20REVD1

Figure 3. 20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision andlor date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/packaging/

Physical Dimensions (Continued)

Figure 4. 20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/

FAIRCHILD
SEMICONDUCTOR*

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

ACEx ${ }^{\text {® }}$	FPS ${ }^{\text {™ }}$	PDP-SPM ${ }^{\text {тм }}$	SyncFET ${ }^{\text {tm }}$
Build it Now ${ }^{\text {™ }}$	FRFET ${ }^{\circledR}$	Power220 ${ }^{\text {® }}$	$\square^{\text {S S }}$ STEM ${ }^{\text {® }}$
CorePLUS ${ }^{\text {¹ }}$	Global Power Resource ${ }^{\text {sm }}$	Power247 ${ }^{\circledR}$	The Power Franchise ${ }^{\text {® }}$
CROSSVOLT ${ }^{\text {TM }}$	Green FPS ${ }^{\text {¹ }}$	POWEREDGE ${ }^{\circledR}$	the Power Franchise
CTL ${ }^{\text {TM }}$	Green FPS ${ }^{\text {™ }}$ e-Series ${ }^{\text {™ }}$	Power-SPM ${ }^{\text {™ }}{ }^{\text {® }}$	P wer franchise
Current Transfer Logic ${ }^{\text {TM }}$	GTO $^{\text {™ }}$	PowerTrench ${ }^{\circledR}$	TinyBoost ${ }^{\text {TM }}$
EcoSPARK ${ }^{\circledR}$	$i-L O^{\text {TM }}$		TinyBuck ${ }^{\text {TM }}$
EZSWITCH ${ }^{\text {TM }}$ *	IntelliMAX ${ }^{\text {™ }}$	QFET ${ }^{\text {® }}$	TinyLogic ${ }^{\circledR}$
E7 ${ }^{\text {м }}$	ISOPLANAR ${ }^{\text {™ }}$	QS ${ }^{\text {™ }}$	TINYOPTOTM
$\Gamma^{\text {® }}$	MegaBuck ${ }^{\text {TM }}$	QT Optoelectronics ${ }^{\text {TM }}$	TinyPower ${ }^{\text {TM }}$
\digamma^{\circledR}	MICROCOUPLER ${ }^{\text {TM }}$	Quiet Series ${ }^{\text {TM }}$	TinyPWM ${ }^{\text {™ }}$
Fairchild ${ }^{\text {® }}$	MicroFET ${ }^{\text {™ }}$	RapidConfigure ${ }^{\text {TM }}$	TinyWire ${ }^{\text {TM }}$
Fairchild Semiconductor ${ }^{\text {® }}$	MicroPak ${ }^{\text {™ }}$	SMART START ${ }^{\text {™ }}$	μ SerDes ${ }^{\text {™ }}$
FACT Quiet Series ${ }^{\text {TM }}$	MillerDrive ${ }^{\text {TM }}$	SPM ${ }^{\text {® }}$	UHC ${ }^{\circledR}$
FACT ${ }^{\circledR}$	Motion-SPM ${ }^{\text {TM }}$	STEALTH ${ }^{\text {TM }}$	Ultra FRFET ${ }^{\text {TM }}$
$\mathrm{FAST}^{\text {® }}$	OPTOLOGIC ${ }^{\circledR}$	SuperFET ${ }^{\text {TM }}$	UniFET ${ }^{\text {TM }}$
FastvCore ${ }^{\text {TM }}$	OPTOPLANAR ${ }^{\circledR}$	SuperSOT ${ }^{\text {TM }}$-3	VCX ${ }^{\text {™ }}$
FlashWriter ${ }^{\text {® }}$ *		SuperSOT ${ }^{\text {TM }}$-6	VCX
		SuperSOT ${ }^{\text {™ }} \mathbf{8}$	
* EZSWITCH ${ }^{\text {TM }}$ and Flash	trademarks of System	rporation, used under license	rchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for ON Semiconductor manufacturer:
Other Similar products are found below :
1.5SMC82AT3G 74LCX574WM FST3126MX MC78L08ACP MMBTA42 FDD8424H_F085A NTZD3154NT1H KSA1015GRTA BAT42XV2 007851X 702607H MC33079DG MC34072DR2G MC34151P MC78L08ACDG 74VHC14MX 74VHC541MTCX FAN3111ESX FDMC86262P FDMD8530 FEBFL7733A_L53U021A FEBFOD8333 MM74HC138MX MMBZ5233B FOD3120SD FPAB30BH60B FQP2N80 1.5KE16AG MT9V115EBKSTCH-GEVB NB6L295MNGEVB NB7L1008MNGEVB NC7WZ126K8X NCL30000LED2GEVB NCN9252MUGEVB NCP1075PSRGEVB NCV4274CDT33RKG NCV887100D1R2G NDT2955 1N5339B NSIC2030JBT3G NV890231MWTXGEVB CAT4101AEVB KA7818ETU S3JB 2SC5569-TD-E FEBFL7734_L55L008A 1V5KE39CA FNB33060T AMIS30422DBGEVB AMIS3062XGEVK

[^0]: H = HIGH Voltage Level
 L = LOW Voltage Level
 $\mathrm{X}=$ Immaterial
 $\boldsymbol{\sim}=$ LOW-to-HIGH Transition

