

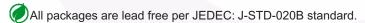
January 2008

74AC573, 74ACT573 Octal Latch with 3-STATE Outputs

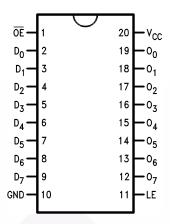
Features

- I_{CC} and I_{OZ} reduced by 50%
- Inputs and outputs on opposite sides of package allowing easy interface with microprocessors
- Useful as input or output port for microprocessors
- Functionally identical to 74AC373 and 74ACT373
- 3-STATE outputs for bus interfacing
- Outputs source/sink 24mA
- 74ACT573 has TTL-compatible inputs

General Description


The 74AC573 and 74ACT573 are high-speed octal latches with buffered common Latch Enable (LE) and buffered common Output Enable (\overline{OE}) inputs.

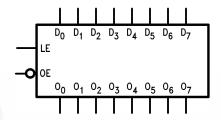
The 74AC573 and 74ACT573 are functionally identical to the 74AC373 and 74ACT373 but with inputs and outputs on opposite sides.

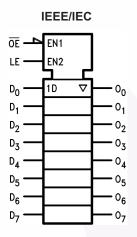

Ordering Information

Order Number	Package Number	Package Description
74AC573SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74AC573SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74AC573MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74ACT573SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74ACT573SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74ACT573MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74ACT573PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering number.

Connection Diagram


Pin Description


Pin Names	Description				
D ₀ –D ₇	Data Inputs				
LE	Latch Enable Input				
ŌĒ	3-STATE Output Enable Input				
O ₀ –O ₇	3-STATE Latch Outputs				

Functional Description

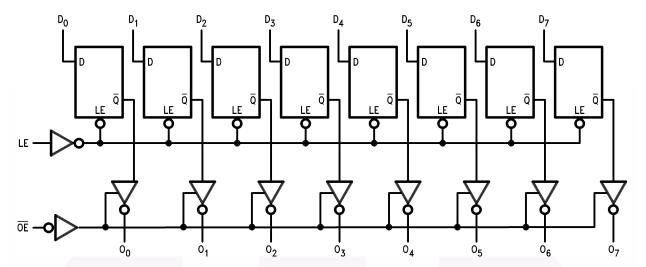
The 74AC573 and 74ACT573 contain eight D-type latches with 3-STATE output buffers. When the Latch Enable (LE) input is HIGH, data on the D_n inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D-type input changes. When LE is LOW the latches store the information that was present on the D-type inputs a setup time preceding the HIGH-to-LOW transition of LE. The 3-STATE buffers are controlled by the Output Enable (\overline{OE}) input. When \overline{OE} is LOW, the buffers are enabled. When \overline{OE} is HIGH the buffers are in the high impedance mode but this does not interfere with entering new data into the latches.

Logic Symbols

Truth Table

	Inputs	Outputs	
ŌĒ	LE	D	On
L	Н	Н	Н
L	Н	L	L
L	L	Х	O ₀
Н	Х	X	Z

H = HIGH Voltage


L = LOW Voltage

Z = High Impedance

X = Immaterial

O₀ = Previous O₀ before HIGH-to-LOW transition of Latch Enable

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	-0.5V to +7.0V
I _{IK}	DC Input Diode Current	
	$V_{I} = -0.5V$	–20mA
	$V_{I} = V_{CC} + 0.5$	+20mA
V _I	DC Input Voltage	-0.5V to V _{CC} + 0.5V
I _{OK}	DC Output Diode Current	
	$V_{O} = -0.5V$	–20mA
	$V_{O} = V_{CC} + 0.5V$	+20mA
Vo	DC Output Voltage	-0.5V to V _{CC} + 0.5V
Io	DC Output Source or Sink Current	±50mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current per Output Pin	±50mA
T _{STG}	Storage Temperature	−65°C to +150°C
T _J	Junction Temperature	140°C

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	
	AC	2.0V to 6.0V
	ACT	4.5V to 5.5V
V _I	Input Voltage	0V to V _{CC}
Vo	Output Voltage	0V to V _{CC}
T _A	Operating Temperature	-40°C to +85°C
ΔV / Δt	Minimum Input Edge Rate, AC Devices:	125mV/ns
	$V_{\rm IN}$ from 30% to 70% of $V_{\rm CC}$, $V_{\rm CC}$ @ 3.3V, 4.5V, 5.5V	
ΔV / Δt	Minimum Input Edge Rate, ACT Devices:	125mV/ns
	V _{IN} from 0.8V to 2.0V, V _{CC} @ 4.5V, 5.5V	

DC Electrical Characteristics for AC

				T _A = -	+25°C	$T_A = -40$ °C to +85°C	
Symbol	Parameter	V _{CC} (V)	Conditions	Тур.	G	uaranteed Limits	Units
V _{IH}	Minimum HIGH Level	3.0	$V_{OUT} = 0.1V$ or	1.5	2.1	2.1	V
	Input Voltage	4.5	V _{CC} – 0.1V	2.25	3.15	3.15	
		5.5		2.75	3.85	3.85	
V _{IL}	Maximum LOW Level	3.0	$V_{OUT} = 0.1V$ or	1.5	0.9	0.9	V
	Input Voltage	4.5	V _{CC} – 0.1V	2.25	1.35	1.35	
		5.5		2.75	1.65	1.65	
V _{OH}	Minimum HIGH Level	3.0	$I_{OUT} = -50\mu A$	2.99	2.9	2.9	V
	Output Voltage	4.5		4.49	4.4	4.4	
		5.5		5.49	5.4	5.4	
		3.0	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OH} = -12\text{mA}$		2.56	2.46	
		4.5	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OH} = -24\text{mA}$		3.86	3.76	
	5.5	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OH} = -24\text{mA}^{(1)}$		4.86	4.76		
V _{OL}	Maximum LOW Level	3.0	$I_{OUT} = 50\mu A$	0.002	0.1	0.1	V
	Output Voltage	4.5		0.001	0.1	0.1	
		5.5		0.001	0.1	0.1	
		3.0	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OL} = 12\text{mA}$		0.36	0.44	
		4.5	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OL} = 24\text{mA}$		0.36	0.44	
		5.5	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OL} = 24\text{mA}^{(1)}$		0.36	0.44	
I _{IN} ⁽²⁾	Maximum Input Leakage Current	5.5	$V_I = V_{CC}$, GND		±0.1	±1.0	μA
I _{OLD}	Minimum Dynamic	5.5	V _{OLD} = 1.65V Max.			75	mA
I _{OHD}	Output Current ⁽³⁾	5.5	V _{OHD} = 3.85V Min.			– 75	mA
I _{CC} ⁽²⁾	Maximum Quiescent Supply Current	5.5	$V_{IN} = V_{CC}$ or GND		4.0	40.0	μA
I _{OZ}	Maximum 3-STATE Leakage Current	5.5	$\begin{aligned} &V_{I}\left(OE\right)=V_{IL},V_{IH};\\ &V_{I}=V_{CC},GND;\\ &V_{O}=V_{CC},GND \end{aligned}$		±0.25	±2.5	μА

Notes:

- 1. All outputs loaded; thresholds on input associated with output under test.
- 2. I_{IN} and I_{CC} @ 3.0V are guaranteed to be less than or equal to the respective limit @ 5.5V V_{CC} .
- 3. Maximum test duration 2.0ms, one output loaded at a time.

DC Electrical Characteristics for ACT

				T _A = -	+25°C	T _A = -40°C to +85°C	
Symbol	Parameter	V _{CC} (V)	Conditions	Тур.	G	uaranteed Limits	Units
V _{IH}	Minimum HIGH Level	4.5	$V_{OUT} = 0.1V$ or	1.5	2.0	2.0	V
	Input Voltage	5.5	V _{CC} – 0.1V	1.5	2.0	2.0	
V _{IL}	Maximum LOW	4.5	$V_{OUT} = 0.1V$ or	1.5	0.8	0.8	V
	Level Input Voltage	5.5	V _{CC} – 0.1V	1.5	0.8	0.8	
V _{OH}	Minimum HIGH Level	4.5	$I_{OUT} = -50\mu A$	4.49	4.4	4.4	V
	Output Voltage	5.5		5.49	5.4	5.4	
		4.5	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OH} = -24\text{mA}$		3.86	3.76	
		5.5	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OH} = -24\text{mA}^{(4)}$		4.86	4.76	
V _{OL}	V _{OL} Maximum LOW 4.5		$I_{OUT} = 50\mu A$	0.001	0.1	0.1	V
	Level Output Voltage	5.5		0.001	0.1	0.1	
		4.5	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OL} = 24\text{mA}$		0.36	0.44	
		5.5	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OL} = 24\text{mA}^{(4)}$		0.36	0.44	
I _{IN}	Maximum Input Leakage Current	5.5	$V_I = V_{CC}$, GND		±0.1	±1.0	μA
I _{OZ}	Maximum 3-STATE Leakage Current	5.5	$V_I = V_{IL}, V_{IH};$ $V_O = V_{CC}, GND$		±0.25	±2.5	μA
I _{CCT}	Maximum I _{CC} /Input	5.5	$V_I = V_{CC} - 2.1V$	0.6		1.5	mA
I _{OLD}	Minimum Dynamic	5.5	V _{OLD} = 1.65V Max.			75	mA
I _{OHD}	Output Current ⁽⁵⁾	5.5	V _{OHD} = 3.85V Min.			- 75	mA
I _{CC}	Maximum Quiescent Supply Current	5.5	$V_{IN} = V_{CC}$ or GND		4.0	40.0	μA

Notes:

- 4. All outputs loaded; thresholds on input associated with output under test.
- 5. Maximum test duration 2.0ms, one output loaded at a time.

AC Electrical Characteristics for AC

			T _A = +25°C, C _L = 50pF		$T_A = -40$ °C to +85°C, $C_L = 50$ pF			
Symbol	Parameter	V _{CC} (V) ⁽⁶⁾	Min.	Тур.	Max.	Min.	Max.	Units
t _{PHL} , t _{PLH}	Propagation Delay,	3.3	0.5	8.5	10.5	2.5	11.0	ns
	D _n to O _n	5.0	1.5	5.5	7.0	1.5	7.5	1
t _{PLH} , t _{PHL}	Propagation Delay,	3.3	2.5	8.5	12.0	2.5	12.5	ns
	LE to O _n	5.0	2.0	6.0	8.0	2.0	8.5	1
t _{PZL} , t _{PZH}	Output Enable Time	3.3	2.5	8.5	13.0	2.5	13.5	ns
		5.0	1.5	6.0	8.5	1.5	9.0	
t _{PHZ} , t _{PLZ}	Output Disable Time	3.3	1.0	9.0	14.5	1.0	15.0	ns
		5.0	1.0	6.0	9.5	1.0	10.0	

Note:

6. Voltage range 5.0 is 5.0V \pm 0.5V. Voltage range 3.3 is 3.3V \pm 0.3V.

AC Operating Requirements for AC

			T _A = +	-25°C, 50pF	$T_A = -40$ °C to +85°C, $C_L = 50$ pF	
Symbol	Parameter	$V_{CC}(V)^{(7)}$	Тур.	Gu	aranteed Minimum	Units
t _S	Setup Time, HIGH or LOW,	3.3	0	3.0	3.0	ns
	D _n to LE	5.0	0	3.0	3.0	
t _H	Hold Time, HIGH or LOW,	3.3	0	1.5	1.5	ns
	D _n to LE	5.0	0	1.5	1.5	
t _W	LE Pulse Width, HIGH	3.3	2.0	4.0	4.0	ns
		5.0	2.0	4.0	4.0	

Note:

7. Voltage range 5.0 is 5.0V \pm 0.5V. Voltage range 3.3 is 3.3V \pm 0.3V.

AC Electrical Characteristics for ACT

			T _A = +25°C, C _L = 50pF		T _A = -40°C C _L =			
Symbol	Parameter	V _{CC} (V) ⁽⁸⁾	Min.	Тур.	Max.	Min.	Max.	Units
t _{PLH} , t _{PHL}	Propagation Delay, D _n to O _n	5.0	2.5	6.0	10.5	2.0	12.0	ns
t _{PLH}	Propagation Delay, LE to O _n	5.0	3.0	6.0	10.5	2.5	12.0	ns
t _{PHL}	Propagation Delay, LE to O _n	5.0	2.5	5.5	9.5	2.0	10.5	ns
t _{PZH}	Output Enable Time	5.0	2.0	5.5	10.0	1.5	11.0	ns
t _{PZL}	Output Enable Time	5.0	1.5	5.5	9.5	1.5	10.5	ns
t _{PHZ}	Output Disable Time	5.0	2.5	6.5	11.0	1.5	12.5	ns
t _{PLZ}	Output Disable Time	5.0	1.5	5.0	8.5	1.0	9.5	ns

Note:

8. Voltage range 5.0 is $5.0V \pm 0.5V$.

AC Operating Requirements for ACT

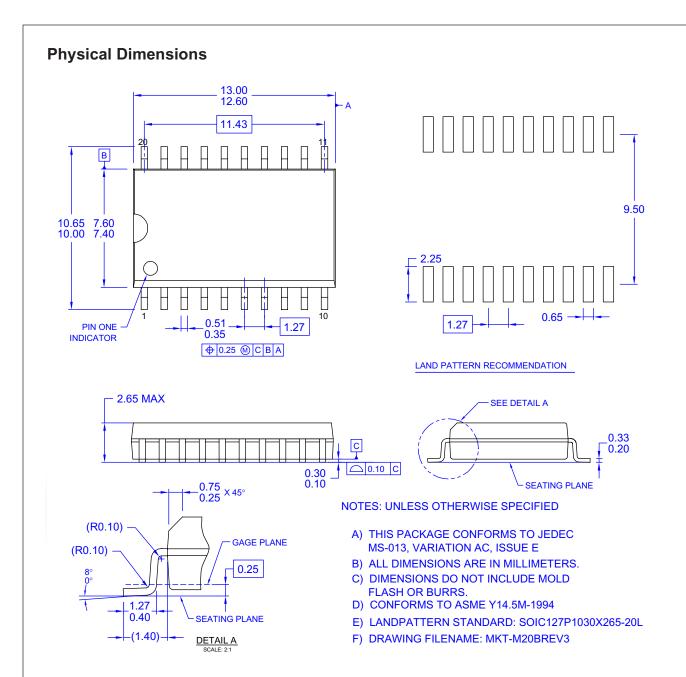
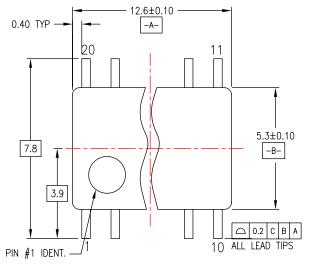
			T _A = +25°C, C _L = 50pF		$T_A = -40$ °C to +85°C, $C_L = 50$ pF	
Symbol	Parameter	V _{CC} (V) ⁽⁹⁾	Тур.	Gua	aranteed Minimum	Units
t _S	Setup Time, HIGH or LOW, D _n to LE	5.0	1.5	3.0	3.5	ns
t _H	Hold Time, HIGH or LOW, D _n to LE	5.0	-1.5	0	0	ns
t _W	LE Pulse Width, HIGH	5.0	2.0	3.5	4.0	ns

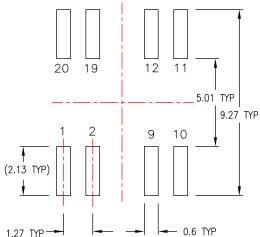
Note:

9. Voltage range 5.0 is $5.0V \pm 0.5V$.

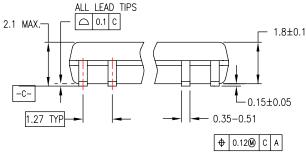
Capacitance

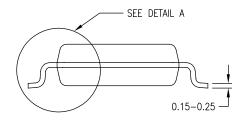
Symbol	Parameter	Conditions	Тур.	Units
C _{IN}	Input Capacitance	V _{CC} = OPEN	5.0	pF
C _{PD}	Power Dissipation Capacitance	V _{CC} = 5.0V	y	
	AC		25.0	pF
	ACT		42.0	

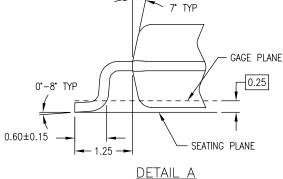

Figure 1. 20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.


Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/


Physical Dimensions (Continued)

LAND PATTERN RECOMMENDATION

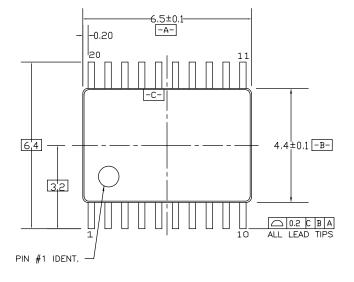


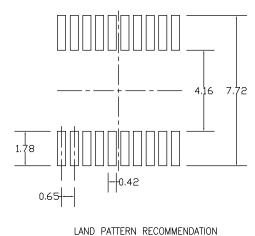
DIMENSIONS ARE IN MILLIMETERS

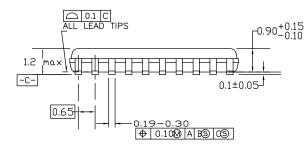
NOTES:

- A. CONFORMS TO EIAJ EDR-7320 REGISTRATION, ESTABLISHED IN DECEMBER, 1998.
 B. DIMENSIONS ARE IN MILLIMETERS.
 C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.

M20DREVC

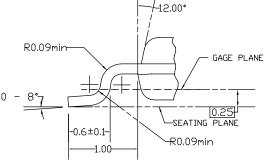

Figure 2. 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide


Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.


Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/packaging/

Physical Dimensions (Continued)



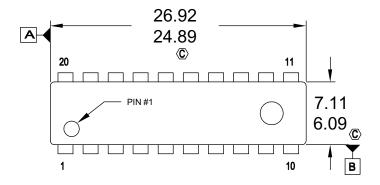
SEE DETAIL A

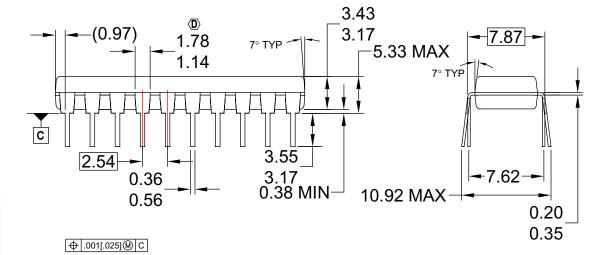
DIMENSIONS ARE IN MILLIMETERS

DETAIL A

NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MD-153, VARIATION AC, REF NOTE 6, DATE 7/93.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLDS FLASH, AND TIE BAR EXTRUSIONS.
- D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982.


MTC20REVD1


Figure 3. 20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/

Physical Dimensions (Continued)

NOTES:
A. CONFORMS TO JEDEC REGISTRATION MS-001,
VARIATIONS AD.

- **B. ALL DIMENSIONS ARE IN MILLIMETERS**
- © DOES NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
 MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED
- 0.25MM.

 (D. DOES NOT INCLUDE DAMBAR PROTRUSIONS. DAMBAR PROTRUSIONS SHALL NOT EXCEED
- E. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- F. DRAWING FILE NAME: N20AREV8

Figure 4. 20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

ACEx[®]
Build it Now[™]
CorePLUS[™]
CROSSVOLT[™]
CTL[™]

Current Transfer Logic™ EcoSPARK[®] EZSWITCH™ *

EZSWII

Fairchild[®]
Fairchild Semiconductor[®]
FACT Quiet Series[™]

FACT[®]
FAST[®]
FastvCore[™]
FlashWriter[®]*

FPS™ FRFET®

Global Power ResourceSM

Green FPS™

Green FPS™ e-Series™

GTO™ i-Lo™ IntelliMAX™ ISOPLANAR™

MegaBuck™ MICROCOUPLER™ MicroFET™

MicroPak™ MillerDrive™ Motion-SPM™ OPTOLOGIC®

OPTOLOGIC[®]
OPTOPLANAR[®]

PDP-SPM™ Power220® Power247® POWEREDGE® Power-SPM™ PowerTrench®

Programmable Active Droop™

QFĒT[®] QS™

QT Optoelectronics™ Quiet Series™ RapidConfigure™ SMART START™

SPM®
STEALTH™
SuperFET™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8

Franchise
TinyBoost™
TinyBuck™
TinyLogic®
TINYOPTO™
TinyPower™
TinyPower™
TinyPWM™
TinyWire™
µSerDes™
UHC®
Ultra FRFET™

SyncFET™
SYSTEM®
GENERAL

The Power Franchise®

Ultra FRFET™ UniFET™ VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

Rev. 132

^{*} EZSWITCH™ and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Latches category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

M38510/75403BSA 634674X 634752C ML4875CS-5 54FCT573ATDB 401639B 027063C 029314R 54FCT573CTLB NLV14043BDR2G 716165RB 74F373DW 74LVC373ADTR2G 74LVC573ADTR2G NL17SG373DFT2G NLV14044BDG 5962-8863901RA 5962-88639012A 2.PM30.006-30 MIC59P50YV NLV14042BDR2G 4.401.001 NLV14044BDR2G 2.L18.001-21 2.PM18.002-18 2.PM18.006-18 2.T18.001-21 2.T18.002-18 2.T18.006-18 CQ/AA-KEY CQ/A-M22X1,5-45-28 M22-2-D5-2-21-01-P CY74FCT2373CTSOC 421283 74ALVCH16260PAG 74FCT373CTQG MM74HC373WM MM74HC573MTCX MM74HC573WM 74LCX373MTC 74LVT16373MTDX 74VHC373MX KLD5.001-02 KLT9.001-02 Z-0233-827-15 74AHCT573D.112 74FCT16373CTPVG8 74FCT573ATQG 74LCX16373MTDX CQ/A-M22X1,5-45-16