74F161A, 74F163A Synchronous Presettable Binary Counter

Features

■ Synchronous counting and loading
■ High-speed synchronous expansion

- Typical count frequency of 120 MHz

General Description

The 74F161A and 74F163A are high-speed synchronous modulo-16 binary counters. They are synchronously presettable for application in programmable dividers and have two types of Count Enable inputs plus a Terminal Count output for versatility in forming synchronous multi-stage counters. The 74F161A has an asynchronous Master-Reset input that overrides all other inputs and forces the outputs LOW. The 74F163A has a Synchronous Reset input that overrides counting and parallel loading and allows the outputs to be simultaneously reset on the rising edge of the clock. The 74F161A and 74F163A are high-speed versions of the 74F161 and 74F163.

Ordering Information

Order Number	Package Number	Package Description
74F161ASC	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
74F161ASJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74F161APC	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
74F163ASC	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
74F163ASJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74F163APC	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Device also available in Tape and Reel. Specify by appending suffix letter " X " to the ordering number.

Connection Diagrams

Logic Symbols

Unit Loading/Fan Out

Pin Names	Description	$\begin{gathered} \text { U.L. } \\ \text { HIGH / LOW } \end{gathered}$	$\begin{gathered} \text { Input } \mathrm{I}_{\mathrm{IH}} / \mathrm{I}_{\mathrm{IL}} \\ \text { Output } \mathrm{I}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}} \end{gathered}$
CEP	Count Enable Parallel Input	1.0 / 1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
CET	Count Enable Trickle Input	1.0 / 2.0	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
CP	Clock Pulse Input (Active Rising Edge)	1.0 / 1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{MR}}$ (74F161A)	Asynchronous Master Reset Input (Active LOW)	1.0 / 1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{SR}}$ (74F163A)	Synchronous Reset Input (Active LOW)	1.0 / 2.0	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
$\mathrm{P}_{0}-\mathrm{P}_{3}$	Parallel Data Inputs	1.0 / 1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{PE}}$	Parallel Enable Input (Active LOW)	1.0 / 2.0	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	Flip-Flop Outputs	50 / 33.3	-1mA / 20mA
TC	Terminal Count Output	50 / 33.3	-1mA / 20mA

Functional Description

The 74F161A and 74F163A count in modulo-16 binary sequence. From state $15(\mathrm{HHHH})$ they increment to state 0 (LLLL). The clock inputs of all flip-flops are driven in parallel through a clock buffer. Thus all changes of the Q outputs (except due to Master Reset of the 74F161A) occur as a result of, and synchronous with, the LOW-toHIGH transition of the CP input signal. The circuits have four fundamental modes of operation, in order of precedence: asynchronous reset (74F161A), synchronous reset (74 F 163 A), parallel load, count-up and hold. Five control inputs-Master Reset (MR, 74F161A), Synchronous Reset ($\overline{\mathrm{SR}}, 74 \mathrm{~F} 163 \mathrm{~A}$), Parallel Enable ($\overline{\mathrm{PE}}$), Count Enable Parallel (CEP) and Count Enable Trickle (CET)— determine the mode of operation, as shown in the Mode Select Table. A LOW signal on MR overrides all other inputs and asynchronously forces all outputs LOW. A LOW signal on $\overline{\mathrm{SR}}$ overrides counting and parallel loading and allows all outputs to go LOW on the next rising edge of CP. A LOW signal on PE overrides counting and allows information on the Parallel Data $\left(\mathrm{P}_{\mathrm{n}}\right)$ inputs to be loaded into the flip-flops on the next rising edge of CP. With $\overline{P E}$ and $\overline{M R}$ ('F161A) or $\overline{\mathrm{SR}}$ (74F163A) HIGH, CEP and CET permit counting when both are HIGH. Conversely, a LOW signal on either CEP or CET inhibits counting.

The 74F161A and 74F163A use D-type edge triggered flip-flops and changing the $\overline{\mathrm{SR}}, \overline{\mathrm{PE}}, \mathrm{CEP}$ and CET inputs when the CP is in either state does not cause errors, provided that the recommended setup and hold times, with respect to the rising edge of CP , are observed.
The Terminal Count (TC) output is HIGH when CET is HIGH and the counter is in state 15. To implement synchronous multi-stage counters, the TC outputs can be used with the CEP and CET inputs in two different ways. Please refer to the 74F568 data sheet. The TC output is subject to decoding spikes due to internal race conditions and is therefore not recommended for use as a clock or asynchronous reset for flip-flops, counters or registers.

Logic Equations:

Count Enable $=$ CEP $\cdot \mathrm{CET} \cdot \overline{\mathrm{PE}}$
$T C=Q_{0} \cdot Q_{1} \cdot Q_{2} \cdot Q_{3} \cdot C E T$

Mode Select Table

$\overline{\mathbf{S R}}^{(\mathbf{1})}$	$\overline{\text { PE }}$	CET	CEP	Action on the Rising Clock Edge ($\boldsymbol{\sim})$
L	X	X	X	Reset (Clear)
H	L	X	X	Load $\left(\mathrm{P}_{\mathrm{n}} \rightarrow \mathrm{Q}_{\mathrm{n}}\right)$
H	H	H	H	Count (Increment)
H	H	L	X	No Change (Hold)
H	H	X	L	No Change (Hold)

H = HIGH Voltage Level
L = LOW Voltage Level
X = Immaterial
Note:

1. For 74F163A only

State Diagram

Block Diagram

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
$\mathrm{T}_{\mathrm{STG}}$	Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
T_{A}	Ambient Temperature Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
T_{J}	Junction Temperature Under Bias	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
V_{CC}	V_{CC} Pin Potential to Ground Pin	-0.5 V to +7.0 V
$\mathrm{~V}_{\mathrm{IN}}$	Input Voltage ${ }^{(2)}$	-0.5 V to +7.0 V
I_{IN}	Input Current ${ }^{(2)}$	-30 mA to +5.0 mA
$\mathrm{~V}_{\mathrm{O}}$	Voltage Applied to Output in HIGH State (with $\left.\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}\right)$ Standard Output $3-S T A T E ~ O u t p u t ~$	-0.5 V to V_{CC}
	Current Applied to Output in LOW State (Max.)	-0.5 V to +5.5 V
	ESD Last Passing Voltage (Min.)	twice the rated I $\mathrm{I}_{\mathrm{OL}}(\mathrm{mA})$

Note:

2. Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Rating
T_{A}	Free Air Ambient Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
V_{CC}	Supply Voltage	+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter	V_{CC}	Conditions	Min.	Typ.	Max.	Units
V_{IH}	Input HIGH Voltage		Recognized as a HIGH Signal	2.0			V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		Recognized as a LOW Signal			0.8	V
V_{CD}	Input Clamp Diode Voltage	Min.	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$			-1.2	V
V_{OH}	Output HIGH $10 \% \mathrm{~V}_{\mathrm{CC}}$ Voltage $5 \% \mathrm{~V}_{\mathrm{CC}}$	Min.		2.5			V
				2.7			
V_{OL}	Output LOW $10 \% \mathrm{~V}_{\mathrm{CC}}$ Voltage	Min.	$\mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}$			0.5	V
I_{H}	Input HIGH Current	Max.	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$			5.0	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test	Max.	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$			7.0	$\mu \mathrm{A}$
$I_{\text {CEX }}$	Output HIGH Leakage Current	Max.	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$			50	$\mu \mathrm{A}$
$V_{\text {ID }}$	Input Leakage Test	0.0	$\mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A}$, All Other Pins Grounded	4.75			V
I_{OD}	Output Leakage Circuit Current	0.0	$\mathrm{V}_{\text {IOD }}=150 \mathrm{mV}$, All Other Pins Grounded			3.75	$\mu \mathrm{A}$
IIL	Input LOW Current	Max.	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}\left(\mathrm{CEP}, \mathrm{CP}, \overline{\mathrm{MR}}, \mathrm{P}_{0}-\mathrm{P}_{3}\right)$			-0.6	mA
			$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$ (CET, $\left.\overline{\mathrm{PE}}, \overline{\mathrm{SR}}\right)$			-1.2	
IOS	Output Short-Circuit Current	Max.	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$	-60		-150	mA
I_{CC}	Power Supply Voltage	Max.			37	55	mA

AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}, \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C}, \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
		Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{f}_{\text {MAX }}$	Maximum Count Frequency		100						MHz
$t_{\text {PLH }}$	Propagation Delay, CP to $Q_{n}(\overline{P E}$ Input HIGH)	3.5	5.5	7.5	3.5	9.0	3.5	8.5	ns
$\mathrm{t}_{\text {PHL }}$		3.5	7.5	10.0	3.5	11.5	3.5	11.0	
$t_{\text {PLH }}$	Propagation Delay, CP to $Q_{n}(\overline{P E}$ Input LOW)	4.0	6.0	8.5	4.0	10.0	4.0	9.5	ns
$t_{\text {PHL }}$		4.0	6.0	8.5	4.0	10.0	4.0	9.5	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay, CP to TC	5.0	10.0	14.0	5.0	16.5	5.0	15.0	ns
$\mathrm{t}_{\text {PHL }}$		5.0	10.0	14.0	5.0	15.5	5.0	15.0	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay, CET to TC	2.5	4.5	7.5	2.5	9.0	2.5	8.5	ns
$\mathrm{t}_{\text {PHL }}$		2.5	4.5	7.5	2.5	9.0	2.5	8.5	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay, $\overline{\mathrm{MR}}$ to Q_{n} (74F161A)	5.5	9.0	12.0	5.5	14.0	5.5	13.0	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay, $\overline{\mathrm{MR}}$ to TC (74F161A)	4.5	8.0	10.5	4.5	12.5	4.5	11.5	ns

AC Operating Requirements

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}, \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\mathrm{s}}(\mathrm{H})$	Setup Time, HIGH or LOW, P_{n} to CP	5.0		5.5		5.0		ns
$\mathrm{t}_{\mathrm{S}}(\mathrm{L})$		5.0		5.5		5.0		
$\mathrm{t}_{\mathrm{H}}(\mathrm{H})$	Hold Time, HIGH or LOW, P_{n} to CP	2.0		2.5		2.0		ns
$\mathrm{t}_{\mathrm{H}}(\mathrm{L})$		2.0		2.5		2.0		
$\mathrm{t}_{\mathrm{S}}(\mathrm{H})$	Setup Time, HIGH or LOW, $\overline{P E}$ or $\overline{S R}$ to CP	11.0		13.5		11.5		ns
$\mathrm{t}_{\mathrm{S}}(\mathrm{L})$		8.5		10.5		9.5		
$\mathrm{t}_{\mathrm{H}}(\mathrm{H})$	Hold Time, HIGH or LOW, $\overline{\mathrm{PE}}$ or $\overline{\mathrm{SR}}$ to CP	2.0		3.6		2.0		ns
$\mathrm{t}_{\mathrm{H}}(\mathrm{L})$		0		0		0		
$\mathrm{t}_{\text {S }}(\mathrm{H})$	Setup Time, HIGH or LOW, CEP or CET to CP	11.0		13.0		11.5		ns
$\mathrm{t}_{\mathrm{S}}(\mathrm{L})$		5.0		6.0		5.0		
$\mathrm{t}_{\mathrm{H}}(\mathrm{H})$	Hold Time, HIGH or LOW, CEP or CET to CP	0		0		0		ns
$\mathrm{t}_{\mathrm{H}}(\mathrm{L})$		0		0		0		
$\mathrm{t}_{\mathrm{w}}(\mathrm{H})$	Clock Pulse Width (Load), HIGH or LOW	5.0		5.0		5.0		ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$		5.0		5.0		5.0		
$\mathrm{t}_{\mathrm{w}}(\mathrm{H})$	Clock Pulse Width (Count), HIGH or LOW	4.0		5.0		4.0		ns
$t_{W}(\mathrm{~L})$		6.0		8.0		7.0		
$t_{w}(\mathrm{~L})$	$\overline{\overline{M R}}$ Pulse Width, LOW (74F161A)	5.0		5.0		5.0		ns
$t_{\text {REC }}$	Recovery Time, $\overline{\mathrm{MR}}$ to CP (74F161A)	6.0		6.0		6.0		ns

Physical Dimensions

Dimensions are in inches (millimeters) unless otherwise noted.

Figure 2. 16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Package Number M16A

Physical Dimensions (Continued)
Dimensions are in millimeters unless otherwise noted.

LAND PATTERN RECOMMENDATION

Figure 3. 16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide Package Number M16D

Physical Dimensions (Continued)
Dimensions are in inches (millimeters) unless otherwise noted.

Figure 4. 16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N16E

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx ${ }^{\text {® }}$	HiSeC ${ }^{\text {™ }}$	Programmable Active Droop ${ }^{\text {TM }}$	TinyLogic ${ }^{\text {® }}$
Across the board. Around the world. ${ }^{\text {TM }}$	i-Lo ${ }^{\text {TM }}$	QFET ${ }^{\text {® }}$	TINYOPTOTM
ActiveArray ${ }^{\text {™ }}$	ImpliedDisconnect ${ }^{\text {TM }}$	QS ${ }^{\text {TM }}$	TinyPower ${ }^{\text {TM }}$
Bottomless ${ }^{\text {™ }}$	IntelliMAX ${ }^{\text {TM }}$	QT Optoelectronics ${ }^{\text {TM }}$	TinyWire ${ }^{\text {™ }}$
Build it Now ${ }^{\text {TM }}$	ISOPLANAR ${ }^{\text {TM }}$	Quiet Series ${ }^{\text {™ }}$	TruTranslation ${ }^{\text {TM }}$
CoolFET ${ }^{\text {™ }}$	MICROCOUPLER ${ }^{\text {TM }}$	RapidConfigure ${ }^{\text {TM }}$	μ SerDes ${ }^{\text {™ }}$
CROSSVOLT ${ }^{\text {TM }}$	MicroPak ${ }^{\text {TM }}$	RapidConnect ${ }^{\text {TM }}$	UHC ${ }^{\text {® }}$
CTL ${ }^{\text {TM }}$	MICROWIRE ${ }^{\text {TM }}$	ScalarPump ${ }^{\text {TM }}$	UniFET ${ }^{\text {TM }}$
Current Transfer Logic ${ }^{\text {TM }}$	MSX ${ }^{\text {TM }}$	SMART START ${ }^{\text {TM }}$	VCX ${ }^{\text {™ }}$
DOME ${ }^{\text {TM }}$	MSXProtm	SPM ${ }^{\text {® }}$	Wire ${ }^{\text {™ }}$
$\mathrm{E}^{2} \mathrm{CMOS}^{\text {™ }}$	OCX ${ }^{\text {™ }}$	STEALTH ${ }^{\text {™ }}$	
EcoSPARK ${ }^{\text {® }}$	OCXProtm	SuperFET ${ }^{\text {TM }}$	
EnSigna ${ }^{\text {™ }}$	OPTOLOGIC ${ }^{\text {® }}$	SuperSOT ${ }^{\text {TM }}$ - 3	
FACT Quiet Series ${ }^{\text {TM }}$	OPTOPLANAR ${ }^{\circledR}$	SuperSOT ${ }^{\text {TM }}$-6	
$\mathrm{FACT}^{\text {® }}$	PACMAN ${ }^{\text {™ }}$	SuperSOT ${ }^{\text {TM- }}$ 8	
FAST ${ }^{\text {® }}$	РОРтм	SyncFET ${ }^{\text {TM }}$	
FASTr ${ }^{\text {TM }}$	Power220 ${ }^{\text {® }}$	TCM $^{\text {™ }}$	
FPS ${ }^{\text {TM }}$	Power247 ${ }^{\text {® }}$	The Power Franchise ${ }^{\text {® }}$	
FRFET ${ }^{\text {® }}$	PowerEdge ${ }^{\text {TM }}$	(1) ${ }^{\text {TM }}$	
GlobalOptoisolator ${ }^{\text {TM }}$	PowerSaver ${ }^{\text {TM }}$	TinyBoost ${ }^{\text {TM }}$	
GTO ${ }^{\text {™ }}$	PowerTrench ${ }^{\text {® }}$	TinyBuck ${ }^{\text {TM }}$	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for ON Semiconductor manufacturer:
Other Similar products are found below :
1.5SMC82AT3G 74LCX574WM FST3126MX MC78L08ACP MMBTA42 FDD8424H_F085A NTZD3154NT1H KSA1015GRTA BAT42XV2 007851X 702607H MC33079DG MC34072DR2G MC34151P MC78L08ACDG 74VHC14MX 74VHC541MTCX FAN3111ESX FDMC86262P FDMD8530 FEBFL7733A_L53U021A FEBFOD8333 MM74HC138MX MMBZ5233B FOD3120SD FPAB30BH60B FQP2N80 1.5KE16AG MT9V115EBKSTCH-GEVB NB6L295MNGEVB NB7L1008MNGEVB NC7WZ126K8X NCL30000LED2GEVB NCN9252MUGEVB NCP1075PSRGEVB NCV4274CDT33RKG NCV887100D1R2G NDT2955 1N5339B NSIC2030JBT3G NV890231MWTXGEVB CAT4101AEVB KA7818ETU S3JB 2SC5569-TD-E FEBFL7734_L55L008A 1V5KE39CA FNB33060T AMIS30422DBGEVB AMIS3062XGEVK

