

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
74LCX74

Low Voltage Dual D-Type Positive Edge-Triggered Flip-Flop with 5V Tolerant Inputs

Features

- 5V tolerant inputs

■ 2.3V-3.6V V_{CC} specifications provided
$\square 7.0 n s t_{P D}$ max. ($V_{C C}=3.3 \mathrm{~V}$), $10 \mu \mathrm{~A} \mathrm{I}_{\mathrm{CC}} \max$.

- Power down high impedance inputs and outputs
$\square \pm 24 \mathrm{~mA}$ output drive $\left(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}\right)$
■ Implements proprietary noise/EMI reduction circuitry
■ Latch-up performance exceeds JEDEC 78 conditions
■ ESD performance:
- Human body model > 2000V
- Machine model > 200V

■ Leadless Pb-Free DQFN package

General Description

The LCX74 is a dual D-type flip-flop with Asynchronous Clear and Set inputs and complementary ($\mathrm{Q}, \overline{\mathrm{Q}}$) outputs. Information at the input is transferred to the outputs on the positive edge of the clock pulse. After the Clock Pulse input threshold voltage has been passed, the Data input is locked out and information present will not be transferred to the outputs until the next rising edge of the Clock Pulse input.
Asynchronous Inputs:
■ LOW input to \bar{S}_{D} (Set) sets Q to HIGH level
■ LOW input to $\overline{\mathrm{C}}_{\mathrm{D}}$ (Clear) sets Q to LOW level
■ Clear and Set are independent of clock
■ Simultaneous LOW on $\overline{\mathrm{C}}_{\mathrm{D}}$ and $\overline{\mathrm{S}}_{\mathrm{D}}$ makes both Q and \bar{Q} HIGH

Ordering Information

Order Number	Package Number	Package Description
74LCX74M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
74LCX74SJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74LCX74BQX ${ }^{(1)}$	MLP14A	14-Terminal Depopulated Quad Very-Thin Flat Pack No Leads (DQFN), JEDEC MO-241, $2.5 \times 3.0 \mathrm{~mm}$
74LCX74MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Note:

1. DQFN package available in Tape and Reel only.

Device also available in Tape and Reel. Specify by appending suffix letter " X " to the ordering number.

[^1]
Connection Diagrams

Pin Assignments for SOIC, SOP, and TSSOP

Pad Assignment for DQFN

(Top View)

(Bottom View)

Pin Description

Pin Names	Description
$\mathrm{D}_{1}, \mathrm{D}_{2}$	Data Inputs
$\mathrm{CP}_{1}, \mathrm{CP}_{2}$	Clock Pulse Inputs
$\overline{\mathrm{C}}_{\mathrm{D} 1}, \overline{\mathrm{C}}_{\mathrm{D} 2}$	Direct Clear Inputs
$\overline{\mathrm{S}}_{\mathrm{D} 1}, \overline{\mathrm{~S}}_{\mathrm{D} 2}$	Direct Set Inputs
$\mathrm{Q}_{1}, \overline{\mathrm{Q}}_{1}, \mathrm{Q}_{2}, \overline{\mathrm{Q}}_{2}$	Outputs
DAP	No Connect

Note: DAP (Die Attach Pad)

Logic Symbols

IEEE/IEC

Truth Table
(Each Half)

Inputs					Outputs	
$\overline{\mathbf{S}}_{\mathbf{D}}$	$\overline{\mathbf{C}}_{\mathbf{D}}$	$\mathbf{C P}$	\mathbf{D}	\mathbf{Q}	$\overline{\mathbf{Q}}$	
L	H	X	X	H	L	
H	L	X	X	L	H	
L	L	X	X	H	H	
H	H		H	H	L	
H	H	$\boldsymbol{\sim}$	L	L	H	
H	H	L	X	Q_{0}	$\overline{\mathrm{Q}}_{0}$	

H = HIGH Voltage Level
L = LOW Voltage Level
X = Immaterial
$\boldsymbol{\sim}=$ LOW-to-HIGH Clock Transition
$\mathrm{Q}_{0}\left(\bar{Q}_{0}\right)=$ Previous $\mathrm{Q}(\overline{\mathrm{Q}})$ before LOW-to-HIGH Transition of Clock

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
V_{CC}	Supply Voltage	-0.5 V to +7.0 V
$\mathrm{~V}_{\mathrm{I}}$	DC Input Voltage	-0.5 V to +7.0 V
$\mathrm{~V}_{\mathrm{O}}$	DC Output Voltage, Output in HIGH or LOW State ${ }^{(2)}$	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
I_{IK}	DC Input Diode Current, $\mathrm{V}_{\mathrm{I}}<\mathrm{GND}$	-50 mA
I_{OK}	DC Output Diode Current $\mathrm{V}_{\mathrm{O}}<\mathrm{GND}$	
	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	-50 mA
I_{O}	DC Output Source/Sink Current	+50 mA
I_{CC}	DC Supply Current per Supply Pin	$\pm 50 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{GND}}$	DC Ground Current per Ground Pin	$\pm 100 \mathrm{~mA}$
$\mathrm{~T}_{\mathrm{STG}}$	Storage Temperature	$\pm 100 \mathrm{~mA}$

Note:

2. I_{O} Absolute Maximum Rating must be observed.

Recommended Operating Conditions ${ }^{(3)}$

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Min.	Max.	Units
V_{CC}	Supply Voltage Operating	2.0	3.6	V
	Data Retention	1.5	3.6	
V_{1}	Input Voltage	0	5.5	V
V_{O}	Output Voltage, HIGH or LOW State	0	V_{Cc}	V
$\mathrm{l}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OL}}$	Output Current $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$		± 24	mA
	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$		± 12	
	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}-2.7 \mathrm{~V}$		± 8	
T_{A}	Free-Air Operating Temperature	-40	85	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	Input Edge Rate, $\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}-2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	0	10	ns/V

Note:

3. Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$	Conditions	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units
				Min.	Max.	
V_{IH}	HIGH Level Input Voltage	2.3-2.7		1.7		V
		2.7-3.6		2.0		
V_{IL}	LOW Level Input Voltage	2.3-2.7			0.7	V
		2.7-3.6			0.8	
V_{OH}	HIGH Level Output Voltage	2.3-3.6	$\mathrm{IOH}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		2.3	$\mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}$	1.8		
		2.7	$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2.2		
		3.0	$\mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA}$	2.4		
			$\mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$	2.2		
V ${ }_{\text {OL }}$	LOW Level Output Voltage	2.3-3.6	$\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$		0.2	V
		2.3	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$		0.6	
		2.7	$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.4	
		3.0	$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$		0.4	
			$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$		0.55	
I_{1}	Input Leakage Current	2.3-3.6	$0 \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$		± 5.0	$\mu \mathrm{A}$
IOFF	Power-Off Leakage Current	0	V_{1} or $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$		10	$\mu \mathrm{A}$
I_{CC}	Quiescent Supply Current	2.3-3.6	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND		10	$\mu \mathrm{A}$
			$3.6 \mathrm{~V} \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$		± 10	
$\Delta_{\text {l }}$	Increase in $\mathrm{I}_{\text {CC }}$ per Input	2.3-3.6	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$		500	$\mu \mathrm{A}$

AC Electrical Characteristics

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=500 \Omega$						Units
		$\begin{gathered} \mathrm{V}_{\mathrm{Cc}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{Cc}}=2.7 \mathrm{~V}, \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \end{gathered}$		
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	150		150		150		MHz
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Propagation Delay, $C P_{n}$ to Q_{n} or \bar{Q}_{n}	1.5	7.0	1.5	8.0	1.5	8.4	ns
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Propagation Delay, $\overline{\mathrm{C}}_{\mathrm{Dn}}$ or $\bar{S}_{D n}$ to Q_{n} or \bar{Q}_{n}	1.5	7.0	1.5	8.0	1.5	8.4	ns
t_{s}	Setup Time	2.5		2.5		4.0		ns
t_{H}	Hold Time	1.5		1.5		2.0		ns
t_{W}	Pulse Width CP	3.3		3.3		4.0		ns
t_{w}	Pulse Width and $\overline{\mathrm{C}}_{\mathrm{D}}, \overline{\mathrm{S}}_{\mathrm{D}}$	3.3		3.6		4.0		ns
$\mathrm{t}_{\text {REC }}$	Recovery Time	2.5		3.0		4.5		ns
$\mathrm{t}_{\text {OSHL }}$, $\mathrm{t}_{\text {OSLH }}$	Output to Output Skew ${ }^{(4)}$		1.0					ns

Note:

4. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW ($\mathrm{t}_{\mathrm{OSHL}}$) or LOW-to-HIGH ($\mathrm{t}_{\mathrm{OSLH}}$).

Dynamic Switching Characteristics

Symbol	Parameter	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	Conditions	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Unit
				Typical	
$V_{\text {OLP }}$	Quiet Output Dynamic Peak VoL	3.3	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$	0.8	V
		2.5	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$	0.6	
Volv	Quiet Output Dynamic Valley V_{OL}	3.3	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$	-0.8	V
		2.5	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$	-0.6	

AC Loading and Waveforms (Generic for LCX Family)

Test	Switch
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	Open
$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PLZ }}$	6 V at $\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{CC}} \times 2$ at $\mathrm{V}_{\mathrm{CC}}=2.5 \pm 0.2 \mathrm{~V}$
$\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PHZ }}$	GND

Figure 1. AC Test Circuit (C_{L} includes probe and jig capacitance)

Waveform for Inverting and Non-Inverting Functions

Propagation Delay. Pulse Width and $\mathrm{t}_{\mathrm{rec}}$ Waveforms

3-STATE Output High Enable and
Disable Times for Logic

	$\mathbf{V}_{\mathbf{C C}}$		
Symbol	$\mathbf{3 . 3 V} \mathbf{0 . 3} \mathbf{V}$	$\mathbf{2 . 7} \mathbf{V}$	$\mathbf{2 . 5 V} \mathbf{0 . 2 V}$
V_{mi}	1.5 V	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{mo}}$	1.5 V	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{x}}$	$\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{y}}$	$\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$

Figure 2. Waveforms (Input Characteristics; $f=1 \mathrm{MHz}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}$)

Tape and Reel Specification

Tape Format for DQFN

Package Designator	Tape Section	Number of Cavities	Cavity Status	Cover Tape Status
BQX	Leader (Start End)	125 (Typ.)	Empty	Sealed
	Carrier	3000	Filled	Sealed
	Trailer (Hub End)	75 (Typ.)	Empty	Sealed

Tape Dimensions inches (millimeters)

NOTES: unless otherwise specified

1. Cummulative pitch for feeding holes and cavities (chip pockets) not to exceed $0.008[0.20]$ over 10 pitch span.
2. Smallest allowable bending radius.
3. Thru hole inside cavity is centered within cavity.
4. Tolerance is $\pm 0.002[0.05]$ for these dimensions on all 12 mm tapes.

5 . Ao and Bo measured on a plane $0.120[0.30$] above the bottom of the pocket.
6. Ko measured from a plane on the inside bottom of the pocket to the top surface of the carrier.
7. Pocket position relative to sprocket hole measured as true position of pocket. Not pocket hole.
8. Controlling dimension is millimeter. Diemension in inches rounded.

Reel Dimensions inches (millimeters)

DETAIL AA

Tape Size	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{N}	W1	W2
12 mm	$13.0(330.0)$	$0.059(1.50)$	$0.512(13.00)$	$0.795(20.20)$	$2.165(55.00)$	$0.488(12.4)$	$0.724(18.4)$

NOTES:

A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION AB, REF NOTE 6
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS
D. DIMENSIONING AND TOLERANCES PER ANSI Y14.5M, 2009.

E. LANDPATTERN STANDARD: SOP65P640X110-14M.
F. DRAWING FILE NAME: MKT-MTC14rev7.

RECOMMENDED LAND PATTERN

NOTES:
A. CONFORMS TO JEDEC REGISTRATION MO-241, VARIATION AA
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN.
E. DRAWING FILENAME: MKT-MLP14Arev2.

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Flip-Flops category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
NLV14027BDG NLX1G74MUTCG 703557B 5962-90606022A 5962-9060602FA NLV14013BDR2G M38510/30104BDA M38510/07106BFA NTE4598B 74LVC74APW-Q100J 74LCX16374MTDX 74LVT74D,118 74VHCT9273FT(BJ) MM74HC374WM 74LVX74MTCX CD40174BF3A HMC723LC3CTR MM74HCT574MTCX 5962-8681501RA MM74HCT273WM SN74LVC74APW SN74LVC74AD SN74HC273DWR MC74HC11ADG M74HC175B1R M74HC174RM13TR 74ALVTH16374ZQLR 74ALVTH32374ZKER 74VHCV374FT(BJ) 74VHCV574FT(BJ) SNJ54ALS574BJ SN74LVC74ADR SN74HC574PWR SN74HC374AN SN74AS574DWR SN74ALS175NSR SN74HC175D SN74AC74D 74AHC1G79GV. 125 74AHC74D. 112 74HC112D.652 74HC574D.652 74HCT173D.652 74HCT374D. 652 74AHC574D. 118 74AHCT1G79GW. 125 74HC273D.652 74HC74D.653 74HC107D.652 74HC574D.653

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

[^1]: (All packages are lead free per JEDEC: J-STD-020B standard.

