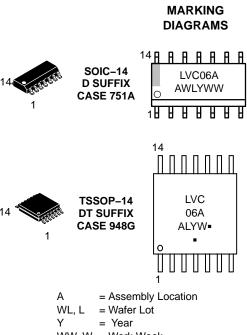

Low-Voltage CMOS Hex Inverter with Open Drain Outputs

With 5 V – Tolerant Inputs

The 74LVC06A is a high performance hex inverter operating from a 1.2 V to 5.5 V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers. These LCX devices have open drain outputs which provide the ability to set output levels, or do active–HIGH AND or active–LOW OR functions. A V_I specification of 5.5 V allows 74LVC06A inputs to be safely driven from 5.0 V devices.


Features

- Designed for 1.2 V to 5.5 V V_{CC} Operation
- 5.0 V Tolerant Inputs/Outputs
- 32 mA Output Sink Capability
- Near Zero Static Supply Current (10 µA) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 250 mA
- Wired-OR, Wired-AND
- Output Level Can Be Set Externally Without Affecting Speed of Device
- Functionally Compatible with LCX05
- ESD Performance: Human Body Model >2000 V; Machine Model >200 V
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

www.onsemi.com

WW, W = Work Week G or • = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

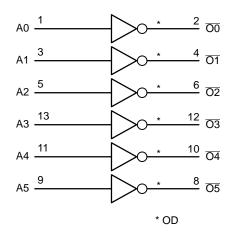


Figure 2. Logic Diagram

Table 1. PIN NAMES

Pins	Function
An	Data Inputs
On	Outputs

Table 2. TRUTH TABLE

An	On
L	Z
H	L

MAXIMUM RATINGS

Symbol	Parameter	Value	Condition	Unit
V _{CC}	DC Supply Voltage	-0.5 to +6.5		V
VI	DC Input Voltage	$-0.5 \leq V_I \leq +6.5$		V
Vo	DC Output Voltage	$-0.5 \le V_O \le \text{+}6.5$	Output in 3-State	V
		$-0.5 \leq V_O \leq V_{CC} + 0.5$	Output in HIGH or LOW State (Note 1)	
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA
Ι _{ΟΚ}	DC Output Diode Current	-50	V _O < GND	mA
		+50	V _O > V _{CC}	mA
Ι _Ο	DC Output Source/Sink Current	±50		mA
I _{CC}	DC Supply Current Per Supply Pin	±100		mA
I _{GND}	DC Ground Current Per Ground Pin	±100		mA
T _{STG}	Storage Temperature Range	-65 to +150		°C
ΤL	Lead Temperature, 1 mm from Case for 10 Seconds	T _L = 260		°C
TJ	Junction Temperature Under Bias	T _J = 135		°C
θ_{JA}	Thermal Resistance (Note 2)	SOIC = 85 TSSOP = 100		°C/W
MSL	Moisture Sensitivity		Level 1	
ILATCHUP	Latch–up Performance at V _{CC} = 3.6 V and 125°C (Note 3)		±250	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1.

I_O absolute maximum rating must be observed. Measured with minimum pad spacing on an FR4 board, using 10 mm-by-1 inch, 2 ounce copper trace no air flow. Measured with minimum
Tested to EIA/JES078.

ORDERING INFORMATION

Device	Package	Shipping [†]
74LVC06ADR2G	SOIC-14 (Pb-Free)	2500 / Tape & Reel
74LVC06ADTR2G	TSSOP-14 (Pb-Free)	2500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Тур	Max	Unit
V _{CC}	Supply Voltage	Operating Functional	1.65 1.2		5.5 5.5	V
VI	Input Voltage		0		5.5	V
V _O	Output Voltage	Active Mode 3–State	0 0		V _{CC} 5.5	V
I _{OL}	LOW Level Output Current	$V_{CC} = 4.5 V - 5.5 V$ $V_{CC} = 3.0 V - 3.6 V$ $V_{CC} = 2.7 V - 3.0 V$ $V_{CC} = 2.3 V - 2.7 V$			+32 +24 +12 +8	mA
T _A	Operating Free-Air Temperature		-40		+125	°C
$\Delta t/\Delta V$	Input Transition Rise or Fall Rate	$V_{CC} = 1.65 \text{ to } 2.7 \text{ V}$ $V_{CC} = 2.7 \text{ to } 5.5 \text{ V}$	0 0		20 10	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

				40 to +85°	С	-4	0 to +125	°C	
Symbol	Parameter	Conditions	Min	Typ (Note 4)	Max	Min	Typ (Note 4)	Max	Unit
V _{IH}	HIGH-level input voltage	V _{CC} = 1.2 V	1.08	-	-	1.08	_	-	V
		V_{CC} = 1.65 V to 1.95 V	0.65 x V _{CC}	-	-	0.65 x V _{CC}	-	-	
		V_{CC} = 2.3 V to 2.7 V	1.7	_	-	1.7	_	-	
		V_{CC} = 2.7 V to 3.6 V	2.0	_	-	2.0	_	-	
		V_{CC} = 4.5 V to 5.5 V	0.7 x V _{CC}	-	-	0.7 x V _{CC}	-	-	
VIL	LOW-level input voltage	V _{CC} = 1.2 V	-	-	0.12	-	-	0.12	V
		V _{CC} = 1.65 V to 1.95 V	-	-	0.35 x V _{CC}	-	-	0.35 x V _{CC}	
		V_{CC} = 2.3 V to 2.7 V	-	-	0.7	-	_	0.7	
		V_{CC} = 2.7 V to 3.6 V	-	-	0.8	-	_	0.8	
		V_{CC} = 4.5 V to 5.5 V	-	-	0.3 x V _{CC}	-	-	0.3 x V _{CC}	
V _{OL}	LOW-level output voltage	V _I = V _{IH} o	r V _{IL}			-	_	-	V
		I _O = 100 μA; V _{CC} = 1.65 V to 3.6 V	-	_	0.2	-	-	0.3	
		I _O = 4 mA; V _{CC} = 1.65 V	-	-	0.45	-	-	0.65	
		I_{O} = 8 mA; V_{CC} = 2.3 V	-	-	0.6	-	-	0.8	
		$I_0 = 12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	-	-	0.4	-	-	0.6	
		$I_0 = 24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.55	-	-	0.8	
		$I_0 = 32 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.55	-	-	0.8	
lı	Input leakage current	$V_{I} = 5.5 V \text{ or GND}$ $V_{CC} = 1.65 \text{ to } 5.5 V$	-	±0.1	±5	-	±0.1	±20	μΑ
I _{OZ}	OFF-state output current	$V_{I} = V_{IH}; V_{O} = 5.5 V \text{ or GND};$ $V_{CC} = 1.65 \text{ to } 5.5 V$	-	±0.1	±5	-	±0.1	±20	μΑ
I _{OFF}	Power-off leakage current	$V_{I} \text{ or } V_{O} = 5.5 \text{ V}; V_{CC} = 0 \text{ V}$	-	±0.1	±10	-	±0.1	±20	μA

4. All typical values are measured at T_A = 25°C and V_{CC} = 3.3 V, unless stated otherwise.

DC ELECTRICAL CHARACTERISTICS

		–40 to +85°C		С	–40 to +125°C				
Symbol	Parameter	Conditions	Min	Typ (Note 4)	Max	Min	Typ (Note 4)	Max	Unit
Icc	Supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5$ V	-	0.1	10	-	0.1	40	μΑ
ΔI_{CC}	Additional supply current	per input pin; V_I = V_{CC} - 0.6 V; I_O = 0 A; V_{CC} = 2.7 V to 5.5 V	-	5	500	-	5	5000	μΑ

4. All typical values are measured at $T_A = 25^{\circ}C$ and $V_{CC} = 3.3$ V, unless stated otherwise.

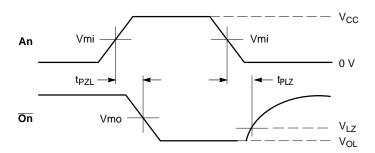
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS ($t_R = t_F = 2.5 \text{ ns}$)

			-	-40 to +85°C	2	-	40 to +125°	С	
Symbol	Parameter	Conditions	Min	Typ (Note 5)	Max	Min	Typ (Note 5)	Max	Unit
t _{pZL}	OFF-state to LOW propagation delay An	V _{CC} = 1.2 V	-	9.0	-	-	-	-	ns
	to On	V_{CC} = 1.65 V to 1.95 V	0.5	2.8	5.7	0.5	-	6.7	
		V_{CC} = 2.3 V to 2.7 V	0.5	1.9	3.1	0.5	-	4.0	
		V _{CC} = 2.7 V	0.5	1.8	3.9	0.5	-	5.0	
		V_{CC} = 3.0 V to 3.6 V	0.5	1.8	3.7	0.5	-	5.0	
		V_{CC} = 4.5 V to 5.5 V	0.5	1.5	2.5	0.5	-	5.0	
t _{pLZ}	LOW to OFF-state	V _{CC} = 1.2 V	-	10.0	-	-	-	-	ns
	propagation delay An to On	V_{CC} = 1.65 V to 1.95 V	0.5	2.6	5.7	0.5	-	6.7	
		V_{CC} = 2.3 V to 2.7 V	0.5	1.4	3.1	0.5	-	4.0	
		V _{CC} = 2.7 V	0.5	2.6	3.9	0.5	-	5.0	
		V_{CC} = 3.0 V to 3.6 V	0.5	2.2	3.7	0.5	_	5.0	
		V_{CC} = 4.5 V to 5.5 V	0.5	1.5	2.6	-	-	3.5	

5. Typical values are measured at T_A = 25°C and V_{CC} = 3.3 V, unless stated otherwise.

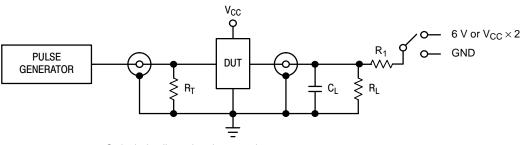
DYNAMIC SWITCHING CHARACTERISTICS


Symbol	Characteristic	Condition		Тур	Max	Unit
V _{OLP}	Dynamic LOW Peak Voltage (Note 6)			0.8 0.6		V
V _{OLV}	Dynamic LOW Valley Voltage (Note 6)			-0.8 -0.6		V

6. Number of outputs defined as "n". Measured with "n-1" outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.

CAPACITIVE CHARACTERISTICS ($T_A = +25^{\circ}C$)

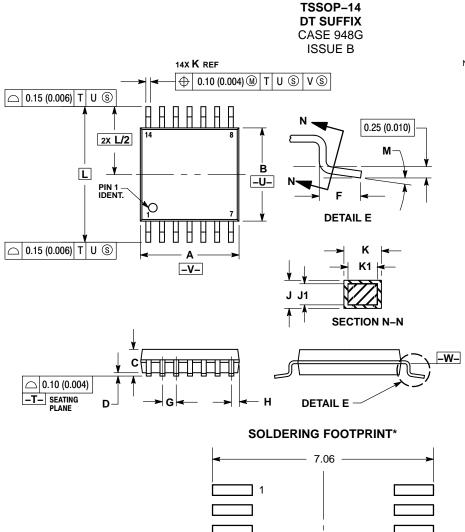
Symbol	Parameter	Condition	Typical	Unit
C _{IN}	Input Capacitance	V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC}	5.0	pF
C _{OUT}	Output Capacitance	V_{CC} = 3.3 V, $V_{\rm I}$ = 0 V or V_{CC}	6.0	pF
C _{PD}	Power Dissipation Capacitance (Note 7)	Per input; $V_I = GND$ or V_{CC}		
		V _{CC} = 1.65 V to 1.95 V	6.5	1
		V_{CC} = 2.3 V to 2.7 V	6.9	1
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	7.2	1


7. C_{PD} is used to determine the dynamic power dissipation (P_D in μ W) $P_D = C_{PD} * V_{CC}^2 x$ fi * N + L ($C_L x V_{CC}^2 x$ fo) where: fi = input frequency in MHz; fo = output frequency in MHz C_L = output load capacitance in pF V_{CC} = supply voltage in Volts N = number of outputs switching L ($C_L * V_{CC}^2$)

 $\label{eq:propagation delays} \begin{array}{l} \textbf{PROPAGATION DELAYS} \\ t_{R} = t_{F} = 2.5 \text{ ns}, \mbox{ 10\% to 90\%; f = 1 MHz; } t_{W} = 500 \text{ ns} \end{array}$

Table 3. AC WAVEFORMS

	v _{cc}						
Symbol	V _{CC} ≥ 4.5 to 5.5 V	V _{CC} ≥ 2.7 to 3.6 V	V _{CC} < 2.7 V				
V _{mi}	V _{CC} / 2	1.5 V	V _{CC} / 2				
V _{mo}	V _{CC} / 2	1.5 V	V _{CC} / 2				
V _{LZ}	V _{OL} + 0.3 V	V _{OL} + 0.3 V	V _{OL} + 0.15 V				

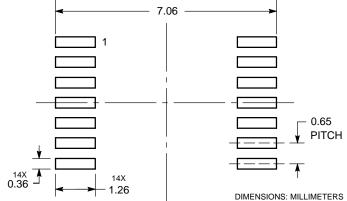


 C_L includes jig and probe capacitance R_T = Z_{OUT} of pulse generator (typically 50 Q) R₁ = R_L

Table 4. TEST CIRCUIT

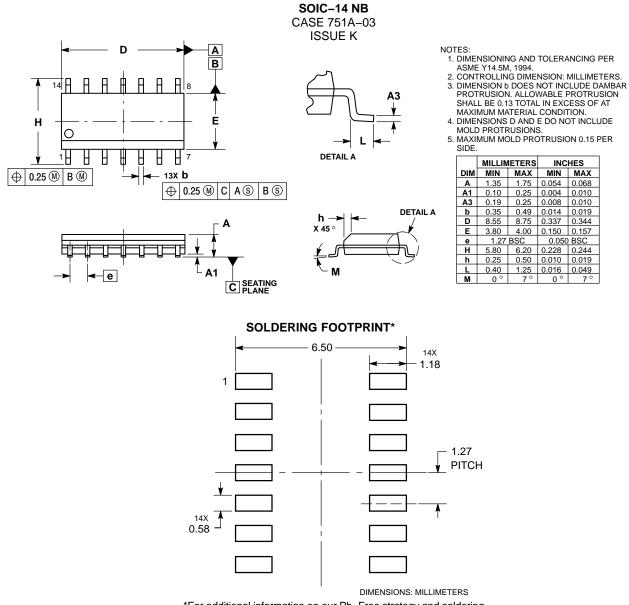
Supply Voltage	Input		Load		V _{EXT}		
V _{CC} (V)	VI	t _r , t _f	CL	RL	t _{PLH} , t _{PHL}	t _{PLZ} , t _{PZL}	t _{PHZ} , t _{PZH}
1.2	V _{CC}	≤ 2 ns	30 pF	1 kQ	Open	2 x V _{CC}	GND
1.65 – 1.95	V _{CC}	≤ 2 ns	30 pF	1 kQ	Open	$2 \times V_{CC}$	GND
2.3 – 2.7	V _{CC}	≤ 2 ns	30 pF	500 Q	Open	$2 \times V_{CC}$	GND
2.7	2.7 V	≤ 2.5 ns	50 pF	500 Q	Open	$2 \times V_{CC}$	GND
3.0 – 3.6	2.7 V	≤ 2.5 ns	50 pF	500 Q	Open	2 x V _{CC}	GND
4.5 to 5.5	V _{CC}	≤ 2.5 ns	50 pF	500 Q	Open	$2 \times V_{CC}$	GND

PACKAGE DIMENSIONS


NOTES:

DTES:
DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
CONTROLLING DIMENSION: MILLIMETER.
DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.35 (0.010) PER SIDE.

INTERCEAD FLASH OK PROTROSION S NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL


DIMENSION AI MAXIMUM MALERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE –W–.

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	4.90	5.10	0.193	0.200	
В	4.30	4.50	0.169	0.177	
С		1.20		0.047	
D	0.05	0.15	0.002	0.006	
F	0.50	0.75	0.020	0.030	
G	0.65	BSC	0.026 BSC		
н	0.50	0.60	0.020	0.024	
J	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
к	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007	0.010	
L	6.40		0.252 BSC		
Μ	0 °	8 °	0 °	8 °	

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the intervent and the inter

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Inverters category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

E5-652Z NL17SGU04P5T5G NLX2G04BMX1TCG CD4009UBE TC4584BFN 022413E NL17SG14AMUTCG NLU2G04AMUTCG NLU2GU04BMX1TCG NLU2G04CMX1TCG NLV17SZ06DFT2G TC74VHC04FK(EL,K) NLV74HC04ADTR2G NLU1G04AMUTCG NLX2G04CMUTCG NLX2G04AMUTCG NLU1GU04CMUTCG NLU1GT14AMUTCG NLU1G04CMUTCG NL17SZU04P5T5G 74LVC06ADTR2G 74LVC04ADR2G NLV37WZ04USG NLX3G14FMUTCG NL17SZ04P5T5G NLV17SG14DFT2G 74ACT14SC BU4069UBF-E2 EMPP008Z NC7WZ14P6X NLV14106BDTR2G NLV74AC14DTR2G SN74HCT04DE4 ODE-3-120023-1F12 74VHCT04AM SV004IE5-1C TC74HC04APF TC7SH04F,LJ(CT TC7W14FK,LF 74VHC14MTCX 74LCX14MTC SN74LVC1GU04DBVR NL27WZ14DFT2G NLU1G14BMX1TCG NLU2G04AMX1TCG NLU2G14AMX1TCG NLU3G14AMX1TCG NLVVHC1G04DFT2G NLX2G04CMX1TCG NLX3G14AMX1TCG