

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor and is officers, employees, uniotificated use, even if such claim any manner.

January 2008

74LVTH125 Low Voltage Quad Buffer with 3-STATE Outputs

Features

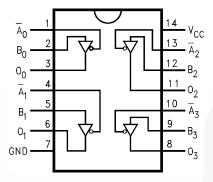
- Input and output interface capability to systems at 5V V_{CC}
- Bushold data inputs eliminate the need for external pull-up resistors to hold unused inputs
- Live insertion/extraction permitted
- Power Up/Down high impedance provides glitch-free bus loading
- Outputs source/sink –32mA/+64mA
- Functionally compatible with the 74 series 125
- Latch-up performance exceeds 500mA
- ESD performance:
 - Human-body model > 2000V
 - Machine model > 200V

Ordering Information

- Charged-device model > 1000V

General Description

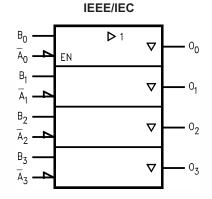
The LVTH125 contains four independent non-inverting buffers with 3-STATE outputs.


These buffers are designed for low-voltage (3.3V) V_{CC} applications, but with the capability to provide a TTL interface to a 5V environment. The LVTH125 is fabricated with an advanced BiCMOS technology to achieve high speed operation similar to 5V ABT while maintaining a low power dissipation.

	mation	
Order Number	Package Number	Package Description
74LVTH125M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
74LVTH125SJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74LVTH125MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering number.

All packages are lead free per JEDEC: J-STD-020B standard.


Connection Diagram

Pin Description

Pin Names	Description
Ā _n , B _n	Inputs
O _n	3-STATE Outputs

Logic Symbol

Truth Table

Inp	Inputs					
Ā _n	B _n	O _n				
L	L	L				
L	Н	Н				
Н	Х	Z				

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Z = HIGH Impedance

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	-0.5V to +4.6V
VI	DC Input Voltage	-0.5V to +7.0V
Vo	DC Output Voltage	
	Output in 3-STATE	-0.5V to +7.0V
	Output in HIGH or LOW State ⁽¹⁾	-0.5V to +7.0V
I _{IK}	DC Input Diode Current, V _I < GND	–50mA
I _{ОК}	DC Output Diode Current, V _O < GND	–50mA
Ι _Ο	DC Output Current, V _O > V _{CC}	
	Output at HIGH State	64mA
	Output at LOW State	128mA
I _{CC}	DC Supply Current per Supply Pin	±64mA
I _{GND}	DC Ground Current per Ground Pin	±128mA
T _{STG}	Storage Temperature	–65°C to +150°C

Note:

1. I_O Absolute Maximum Rating must be observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter		Max	Units
V _{CC}	Supply Voltage	2.7	3.6	V
VI	Input Voltage	0	5.5	V
I _{OH}	HIGH-Level Output Current		-32	mA
I _{OL}	LOW-Level Output Current		64	mA
T _A	Free-Air Operating Temperature	-40	85	°C
$\Delta t / \Delta V$	Input Edge Rate, $V_{IN} = 0.8V - 2.0V$, $V_{CC} = 3.0V$	0	10	ns/V

					T _A = -40°C to +85°C			
					Min.	Typ. ⁽²⁾	Max.	1
Symbol	Parameter		V _{CC} (V)	Conditions				Units
V _{IK}	Input Clamp Diode Volta	ige	2.7	I _I = -18mA			-1.2	V
VIH	Input HIGH Voltage		2.7–3.6	$V_0 \le 0.1V$ or	2.0			V
VIL	Input LOW Voltage		2.7–3.6	$V_{O} \ge V_{CC} - 0.1V$			0.8	V
V _{OH}	Output HIGH Voltage		2.7–3.6	I _{OH} = -100μA	V _{CC} - 0.2			V
		-	2.7	I _{OH} = -8mA	2.4			
		-	3.0	$I_{OH} = -32 \text{mA}$	2.0		-	
V _{OL}	Output LOW Voltage		2.7	I _{OL} = 100μA			0.2	V
				$I_{OL} = 24 \text{mA}$			0.5	
			3.0	$I_{OL} = 16 \text{mA}$			0.4	1
				$I_{OL} = 32 \text{mA}$			0.5	
				$I_{OL} = 64 \text{mA}$			0.55	
I _{I(HOLD)}	Bushold Input Minimum	Drive	3.0	$V_{I} = 0.8V$	75			μA
				$V_{I} = 2.0V$	-75			
I _{I(OD)}	Bushold Input Over-Driv	re 🛛	3.0	(3)	500			μA
. ,	Current to Change State	e		(4)	-500			1
lı	Input Current		3.6	$V_{I} = 5.5V$			10	μA
	Con	trol Pins	3.6	$V_{I} = 0V \text{ or } V_{CC}$			±1	1
	Data	Pins	3.6	$V_I = 0V$			-5	1
				$V_I = V_{CC}$			1	
I _{OFF}	Power Off Leakage Cur	rent	0	$0V \le V_I \text{ or } V_O \le 5.5V$			±100	μA
I _{PU/PD}	Power up/down 3-STATI Output Current	Ξ	0–1.5	$V_0 = 0.5V$ to 3.0V, $V_1 = GND$ or V_{CC}			±100	μA
I _{OZL}	3-STATE Output Leakag	e Current	3.6	$V_{O} = 0.5V$			-5	μA
I _{OZH}	3-STATE Output Leakag	e Current	3.6	$V_0 = 3.0V$			5	μA
I _{OZH} +	3-STATE Output Leakag	e Current	3.6	$V_{CC} < V_O \le 5.5V$			10	μA
I _{CCH}	Power Supply Current		3.6	Outputs HIGH			0.19	mA
I _{CCL}	Power Supply Current		3.6	Outputs LOW			5	mA
I _{CCZ}	Power Supply Current		3.6	Outputs Disabled			0.19	mA
I _{CCZ} +	Power Supply Current		3.6	$V_{CC} \le V_O \le 5.5V$, Outputs Disabled			0.19	mA
ΔI_{CC}	Increase in Power Supp Current ⁽⁵⁾	ly	3.6	One Input at $V_{CC} - 0.6V$, Other Inputs at V_{CC} or GND			0.2	mA

74LVTH125 — Low Voltage Quad Buffer with 3-STATE Outputs

Notes:

2. All typical values are at V_{CC} = 3.3V, $T_A = 25^{\circ}C$.

3. An external driver must source at least the specified current to switch from LOW-to-HIGH.

4. An external driver must sink at least the specified current to switch from HIGH-to-LOW.

5. This is the increase in supply current for each input that is at the specified voltage level rather than V_{CC} or GND.

Dynamic Switching Characteristics(6)

			Conditions	T _A = 25°C			
Symbol	Parameter	V _{CC} (V)	$C_L = 50 \text{ pF, } R_L = 500\Omega$	Min.	Тур.	Max.	Units
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	3.3	(7)		0.8		V
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	3.3	(7)		-0.8		V

Notes:

6. Characterized in SOIC package. Guaranteed parameter, but not tested.

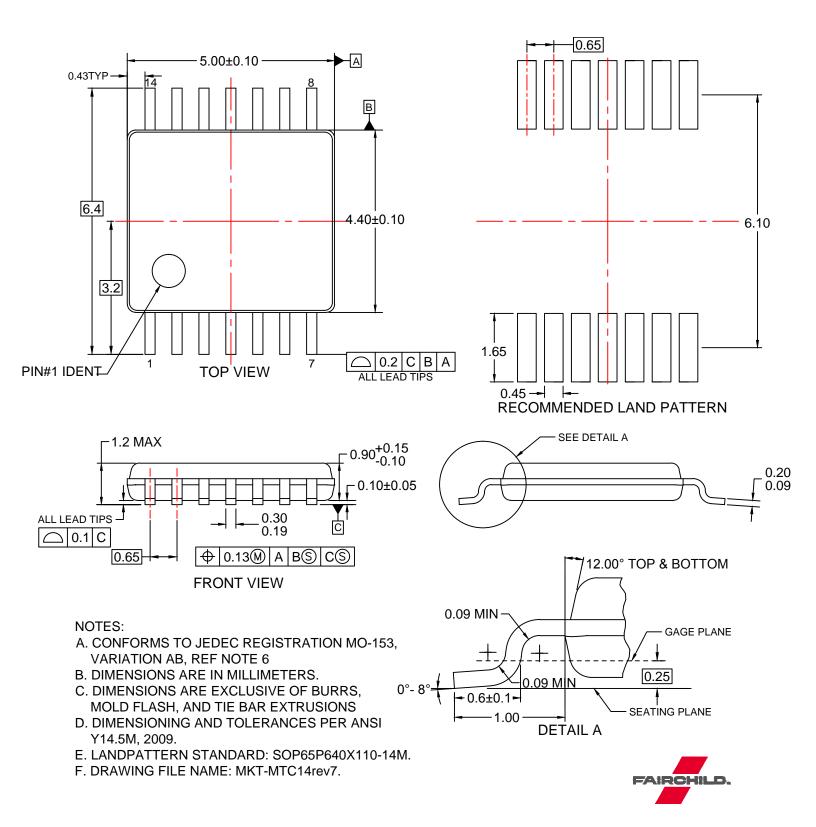
7. Max number of outputs defined as (n). n-1 data inputs are driven 0V to 3V. Output under test held LOW.

AC Electrical Characteristics

		$\label{eq:TA} \begin{split} \mathbf{T}_{\mathbf{A}} &= -40^{\circ}\mathbf{C} \text{ to } \mathbf{+85^{\circ}C},\\ \mathbf{C}_{\mathbf{L}} &= \mathbf{50pF}, \ \mathbf{R}_{\mathbf{L}} &= 500\Omega \end{split}$					
		Vcc	₂ = 3.3V ± 0).3V	V _{CC} =	= 2.7V	
Symbol	Parameter	Min.	Typ. ⁽⁸⁾	Max.	Min.	Max.	Units
t _{PLH}	Propagation Delay, Data to Output	1.0		3.5	1.0	4.5	ns
t _{PHL}	1	1.0		3.9	1.0	4.9	
t _{PZH}	Output Enable Time	1.0		4.0	1.0	5.5	ns
t _{PZL}	1	1.1		4.0	1.1	5.4	
t _{PHZ}	Output Disable Time	1.5		4.5	1.5	5.7	ns
t _{PLZ}	1	1.3		4.5	1.3	4.0	
t _{OSHL} , t _{OSLH}	Output to Output Skew ⁽⁹⁾			1.0		1.0	ns

Notes:

8. All typical values are at $V_{CC} = 3.3V$, $T_A = 25^{\circ}C$.


 Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}).

Capacitance⁽¹⁰⁾

Symbol	Parameter	Conditions	Typical	Units
C _{IN}	Input Capacitance	$V_{CC} = 0V, V_I = 0V \text{ or } V_{CC}$	4	pF
C _{OUT}	Output Capacitance	V_{CC} = 3.0V, V_{O} = 0V or V_{CC}	8	pF

Note:

10. Capacitance is measured at frequency f = 1MHz, per MIL-STD-883B, Method 3012.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Buffers & Line Drivers category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

LXV200-024SW 74AUP2G34FW3-7 HEF4043BP PI74FCT3244L MC74HCT365ADTR2G Le87401NQC Le87402MQC 028192B 042140C 051117G 070519XB NL17SZ07P5T5G NLU1GT126AMUTCG 74AUP1G17FW5-7 74LVC2G17FW4-7 CD4502BE 5962-8982101PA 5962-9052201PA 74LVC1G125FW4-7 NL17SH17P5T5G NL17SH125P5T5G NLV37WZ07USG RHRXH162244K1 74AUP1G34FW5-7 74AUP1G07FW5-7 74LVC2G126RA3-7 NLX2G17CMUTCG 74LVCE1G125FZ4-7 Le87501NQC 74AUP1G126FW5-7 TC74HC4050AP(F) 74LVCE1G07FZ4-7 NLX3G16DMUTCG NLX2G06AMUTCG NLVVHC1G50DFT2G NLU2G17AMUTCG LE87100NQC LE87290YQC LE87290YQCT LE87511NQC LE87511NQCT LE87557NQC LE87557NQCT LE87614MQC LE87614MQCT 74AUP1G125FW5-7 NLU2G16CMUTCG MC74LCX244MN2TWG NLV74VHC125DTR2G NL17SG126DFT2G