
74LVT16952•74LVTH16952

Connection Diagram

Pin Descriptions

Pin Names	Description
$A_{0}-A_{16}$	Data Register A Inputs B-Register 3-STATE Outputs Data Register B Inputs
$\mathrm{B}_{0}-\mathrm{B}_{16}$	A-Register 3-STATE Outputs $\mathrm{CPAB}_{n}, \mathrm{CPBA}_{n}$ $\overline{\mathrm{CEA}}_{n}, \overline{\mathrm{CEB}}_{\mathrm{n}}$
$\overline{\mathrm{OEAB}}_{\mathrm{n}}, \overline{\mathrm{OEBA}}_{\mathrm{n}}$	Clock Pulse Inputs
Clock Enable	
Output Enable Inputs	

Truth Table

(Note 1)

Inputs				Internal Register Value	Output
A_{n}	CPAB_{n}	$\overline{\mathrm{CEA}}_{\mathrm{n}}$	$\overline{\mathrm{OEAB}}_{\mathrm{n}}$		B_{n}
X	X	H	L	NC	B_{0}
X	X	H	H	NC	Z
L	\sim	L	L	L	L
L	\sim	L	H	L	Z
H	\sim	L	L	H	H
H	\sim	L	H	H	Z
X	L	X	L	NC	B_{0}
X	H	X	L	NC	B_{0}
X	L	X	H	NC	Z
X	H	X	H	NC	Z

= LOW Voltage Level
X = Immaterial
$Z=$ Output High Impedance
= Output High Impedance
$\widehat{N C}=$ LOW-to-HIGH Transition.
No Change (state established by last valid CP)
$\mathrm{B}_{0}=$ State established by last valid $C P$
Note 1: A to B data flow shown; B to A flow control is the same, but used $\overline{O E B A}_{n}$, CPBA $_{n}$ and $\overline{C E B}_{n}$

Recommended Operating Conditions

Symbol	Marameter	Min	Max	Units
V_{CC}	Supply Voltage	2.7	3.6	V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage	0	5.5	
I_{OH}	HIGH-Level Output Current		-32	
I_{OL}	LOW-Level Output Current		V	
T_{A}	Free-Air Operating Temperature	-40	64	+85
$\Delta \mathrm{t} / \Delta \mathrm{V}$	Input Edge Rate, $\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}-2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	0	m	

Note 2: Absolute Maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum rated conditions is not implied.
Note 3: I_{O} Absolute Maximum Rating must be observed.

DC Electrical Characteristics

Symbol	Parameter		V_{cc}	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions	
			(V)	Min	Max			
$\mathrm{V}_{\text {IK }}$	Input Clamp Diode Voltage		2.7		-1.2	V	$\mathrm{I}_{1}=-18 \mathrm{~mA}$	
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.7-3.6	2.0		V	$\begin{aligned} & \mathrm{V}_{\mathrm{O}} \leq 0.1 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{O}} \geq \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$	
V_{IL}	Input LOW Voltage		2.7-3.6		0.8			
V_{OH}	Output HIGH Voltage		2.7-3.6	$\mathrm{V}_{\mathrm{CC}}-0.2$		V	$\mathrm{l}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	
			2.7	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}$	
			3.0	2.0		V	$\mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA}$	
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage		2.7		0.2	V	$\mathrm{l}_{\mathrm{OL}}=100 \mu \mathrm{~A}$	
			2.7		0.5	V	$\mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$	
			3.0		0.4	V	$\mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}$	
			3.0		0.5	V	$\mathrm{l}_{\mathrm{OL}}=32 \mathrm{~mA}$	
			3.0		0.55	V	$\mathrm{l}_{\mathrm{OL}}=64 \mathrm{~mA}$	
$\mathrm{l}_{\text {(HOLD) }}$	Bushold Input Minimum Drive		3.0	75		$\mu \mathrm{A}$	$\mathrm{V}_{1}=0.8 \mathrm{~V}$	
(Note 4)			-75		$\mu \mathrm{A}$	$\mathrm{V}_{1}=2.0 \mathrm{~V}$		
$\mathrm{I}_{(\text {(OD) }}$	Bushold Input Over-Drive Current to Change State			3.0	500		$\mu \mathrm{A}$	(Note 5)
(Note 4)			-500			$\mu \mathrm{A}$	(Note 6)	
1	Input Current		3.6		10	$\mu \mathrm{A}$	$\mathrm{V}_{1}=5.5 \mathrm{~V}$	
	Control		3.6		± 1	$\mu \mathrm{A}$	$\mathrm{V}_{1}=0 \mathrm{~V}$ or V_{CC}	
		Data Pins	3.6		-5	$\mu \mathrm{A}$	$V_{1}=0 \mathrm{~V}$	
	Data Pin				1	$\mu \mathrm{A}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$	
IofF	Power Off Leakage Current		0		± 100	$\mu \mathrm{A}$	$0 \mathrm{~V} \leq \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$	
$\mathrm{I}_{\text {PU/PD }}$	Power Up/Down 3-STATE Output Current		0-1.5V		± 100	$\mu \mathrm{A}$	$\begin{array}{\|l\|} \hline \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { to } 3.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} \\ \hline \end{array}$	
Iozl	3-STATE Output Leakage Current		3.6		-5	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=3.0 \mathrm{~V}$	
lozL (Note 4)	3-STATE Output Leakage Current		3.6		-5	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=0.0 \mathrm{~V}$	
$\mathrm{I}_{\text {OzH }}$	3-STATE Output Leakage Current		3.6		5	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$	
${ }^{\mathrm{I} Z \mathrm{ZH}}$ (Note 4)	3-STATE Output Leakage Current		3.6		5	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=3.6 \mathrm{~V}$	
IOZH^{+}	3-STATE Output Leakage Current		3.6		10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}<\mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$	
$\mathrm{I}_{\text {CCH }}$	Power Supply Current		3.6		0.19	mA	Outputs High	
$\mathrm{I}_{\text {CLL }}$	Power Supply Current		3.6		5	mA	Outputs Low	
${ }^{\text {CCZ }}$	Power Supply Current		3.6		0.19	mA	Outputs Disabled	
${ }^{\text {ccz }}{ }^{+}$	Power Supply Current		3.6		0.19	mA	$\mathrm{V}_{\mathrm{CC}} \leq \mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V},$ Outputs Disabled	
${ }^{\Delta} \mathrm{l}_{\mathrm{CC}}$	Increase in Power Supply Current (Note 7)		3.6		0.2	mA	One Input at $\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$ Other Inputs at V_{CC} or GND	
Note 4: Applies to bushold version only (74LVTH16952). Note 5: An external driver must source at least the specified current to switch from LOW-to-HIGH. Note 6: An external driver must sink at least the specified current to switch from HIGH-to-LOW. Note 7: This is the increase in supply current for each input that is at the specified voltage level rather than $V_{C C}$ or GND. Dynamic Switching Characteristics (Note 8)								
Symbol	Parameter	V_{CC} (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			Units	Conditions$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	
			M	Typ				
$\mathrm{V}_{\text {OLP }}$	Quiet Output Maximum Dynamic V_{OL} Quiet Output Minimum Dynamic V_{O}	3.3		0.8		V	(Note 9)	
$\mathrm{V}_{\text {OLV }}$		3.3		-0.8		V	(Note 9)	

Note 8: Characterized in SSOP package. Guaranteed parameter, but not tested.
Note 9: Max number of outputs defined as (n). $\mathrm{n}-1$ data inputs are driven 0 V to 3 V . Output under test held LOW.

Symbol	Parameter			$\begin{aligned} & A=-4 \\ & L=50 \end{aligned}$	$\begin{aligned} & +85^{\circ} \\ & =500 \end{aligned}$		Units
			$\mathrm{V}_{\text {cc }}=3.3 \pm 0.3 \mathrm{~V}$		$\mathrm{V}_{\mathrm{Cc}}=2.7 \mathrm{~V}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency		150		150		MHz
$t_{\text {PLH }}$ $t_{\text {PHL }}$	$\begin{aligned} & \text { Propagation Delay } \\ & \text { CPBA or CPAB to A or B } \end{aligned}$		$\begin{aligned} & 1.3 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 4.8 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 4.7 \\ & 5.0 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time $\overline{\mathrm{OE}}$ to A or B		$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.3 \\ & 4.8 \end{aligned}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 4.9 \\ & 5.7 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time $\overline{\mathrm{OE}}$ to A or B		$\begin{aligned} & 2.1 \\ & 2.1 \end{aligned}$	$\begin{aligned} & 5.7 \\ & 5.1 \end{aligned}$	$\begin{aligned} & \hline 2.1 \\ & 2.1 \end{aligned}$	$\begin{aligned} & \hline 6.2 \\ & 5.3 \end{aligned}$	ns
t_{W}	Pulse Width, CPAB or CPBA HIGH or LOW		3.3		3.3		ns
t_{s}	Setup Time	A or B before CPAB or CPBA	1.7		2.5		ns
		$\overline{\mathrm{CEA}}$ or $\overline{\mathrm{CEB}}$ before CPAB or CPBA	2.0		2.8		
t_{H}	Hold Time	A or B after CPAB or CPBA	0.8		0.0		ns
		$\overline{\mathrm{CEA}}$ or $\overline{\mathrm{CEB}}$ after CPAB or CPBA	0.4		0.0		
$\mathrm{t}_{\mathrm{OSLH}}$ $\mathrm{t}_{\mathrm{OSHL}}$	Output to Output Skew (Note 10)			$\begin{aligned} & \hline 1.0 \\ & 1.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	ns
Note 10: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW ($\mathrm{t}_{\mathrm{OSHL}}$) or LOW-to-HIGH ($\mathrm{t}_{\mathrm{OSLH}}$). Capacitance (Note 11)							
Symbol	Parameter	Conditions		Typical		Units	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=\mathrm{OPEN}, \mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}		4		pF	
$\mathrm{C}_{\mathrm{l} / \mathrm{O}}$		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}$		8		pF	

Note 11: Capacitance is measured at frequency $\mathrm{f}=1 \mathrm{MHz}$, per MIL-STD-883, Method 3012.

Physical Dimensions inches (millimeters) unless otherwise noted

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bus Transceivers category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
74LS645N DS8838 FXL4TD245UMX IDT74CBTLV3257PGG 74LVT245BBT20-13 5962-8683401DA PCA9617ADMR2G 5962-
8953501KA 5962-86834012A 5962-7802301Q2A 5962-7802002MFA 5962-7802001MFA 74VHCV245FT(BJ) NCV7349D13R2G
TC74VCX164245(EL,F MC74LCX245MNTWG TC7WPB8306L8X,LF(S TC7WPB9307FC(TE85L 74FCT16245CTPVG8
74FCT16543CTPVG 74FCT245CTPYG8 MM74HC245AMTCX 74LVCH16245APVG 74LVX245MTC 5962-9221405M2A NTS0102DP-
Q100H 74ALVC16245MTDX 74ALVCH32245BF 74FCT163245APVG 74FCT245ATPYG8 74FCT245CTQG 74FCT3245AQG
74LCXR162245MTX 74VHC245M 74VHC245MX TC7WPB9306FC(TE85L TC7WPB9306FK(T5L,F JM38510/65553BRA ST3384EBDR
74LVC1T45GF,132 74AVC4TD245BQ,115 PQJ7980AHN/C0JL,51 MC100EP16VBDG FXL2TD245L10X 74LVC1T45GM,115
TC74AC245P(F) PSB21150F S LLHR SNJ54LS245FK SNJ54AHC245J SNJ54ABT245AFK

