

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

June 2014

74LVX08 **Low Voltage Quad 2-Input AND Gate**

Features

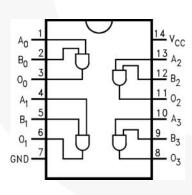
Input Voltage Level Translation from 5 V to 3 V

- Ideal for Low-power / Low-Noise 3.3 V Applications
- · Guaranteed Simultaneous Switching Noise Level and Dynamic threshold Performance

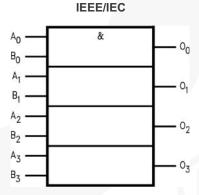
Description

The LVX08 contains four 2-input AND gates. The inputs tolerate voltages up to 7 V allowing the interface of 5 V systems to 3 V systems.

Ordering Information


Part Number	Top Mark	Package	Packing Method	Packing Description
74LVX08M	LVX08	SOIC 14L	Rail	14-Lead Small Outline Integrated Circuit, JEDEC MS-012, 0.150 inch Narrow
74LVX08MX	LVX08	SOIC 14L	Tape and Reel	14-Lead Small Outline Integrated Circuit, JEDEC MS-012, 0.150 inch Narrow
74LVX08MTCX	LVX08	TSSOP 14L	Tape and Reel	14-Lead Thin Shrink Small Outline Package, JEDEC MO-153, 4.4 mm Wide

1



All packages are lead free per JEDEC: J-STD-020B standard.

Connection Diagram

Logic Symbol

Pin Description

Pin Names	Description
A _n , B _n	Inputs
On	Outputs

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating	
V _{CC}	Supply Voltage		-0.5 V to 7.0 V
I _{IK}	DC Input Diode Current, V _I = -0.5 V		-20 mA
V _I	DC Input Voltage		-0.5 V to 7.0 V
ı	DC Output Diode Current	V _O = -0.5 V	-20 mA
I _{OK}	De Output Diode Current	$V_{O} = V_{CC} + 0.5 \text{ V}$	+20 mA
Vo	DC Output Voltage		-0.5 V to V _{CC} + 0.5 V
I _O	DC Output Source or Sink Current		±25 mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current		±50 mA
T _{STG}	Storage Temperature		-65°C to 150°C
Р	Power Dissipation		180 mW
T_L	Lead Temperature (Soldering, 10 seconds)		240°C

Recommended Operating Conditions(1)

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	2.0 V to 3.6 V
V _I	Input Voltage	0 V to 5.5 V
Vo	Output Voltage	0 V to V _{CC}
T_A	Operating Temperature	-40°C to 85°C
Δt / ΔV	Input Rise and Fall Time	0 ns/V to 100 ns/V

Note:

1. Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V _{CC}	Conditions	T _A = 25°C			T _A = -40°C to +85°C		Unit
				Min.	Тур.	Max.	Min.	Max.	
		2.0		1.5			1.5		
V_{IH}	HIGH Level Input Voltage	3.0		2.0			2.0		V
	ronago	3.6		2.4			2.4		
		2.0				0.5		0.5	
V_{IL}	LOW Level Input Voltage	3.0				8.0		0.8	V
	ronago	3.6				8.0		0.8	
	HIGH Level Output Voltage	2.0	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OH} = -50 \mu A$	1.9	2.0		1.9		
V _{OH}		3.0	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OH} = -50 \mu\text{A}$	2.9	3.0		2.9		V
			$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OH} = -4 \text{ mA}$	2.58			2.48		
	LOW Level Output Voltage	2.0	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OL} = -50 \mu\text{A}$		0.0	0.1		0.1	
V_{OL}		3.0	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OL} = -50 \mu\text{A}$		0.0	0.1		0.1	V
			$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OL} = -4 \text{ mA}$			0.36		0.44	
I _{IN}	Input Leakage Current	3.6	V _{IN} = 5.5 V or GND			±0.1		±1.0	μΑ
I _{CC}	Quiescent Supply Current	3.6	$V_{IN} = V_{CC}$ or GND			2.0		20.0	μΑ

Noise Characteristics(2)

Symbol	Parameter	V (\/)	C ₁ (pF)	T _A = 25°C		Unit
Syllibol	Falametei	V _{CC} (V)	C [(pi)	Тур.	Limit	Oilit
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	3.3	50	0.3	0.5	V
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	3.3	50	-0.3	-0.5	V
V _{IHD}	Minimum HIGH Level Dynamic Input Voltage	3.3	50		2.0	V
V _{ILD}	Maximum LOW Level Dynamic Input Voltage	3.3	50		0.8	V

Note:

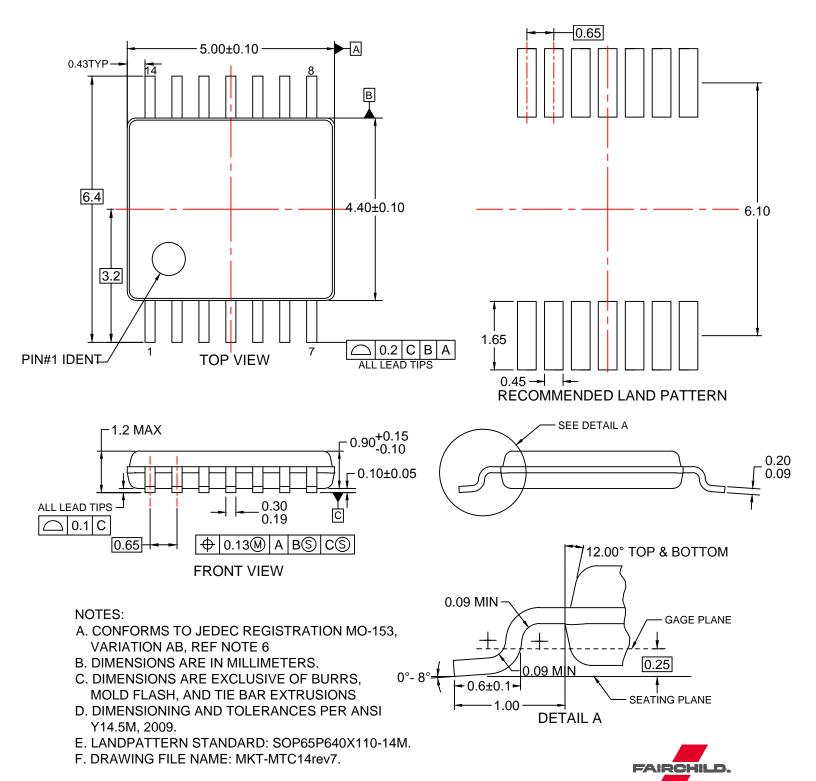
2. Input $t_r = t_f = 3 \text{ ns}$

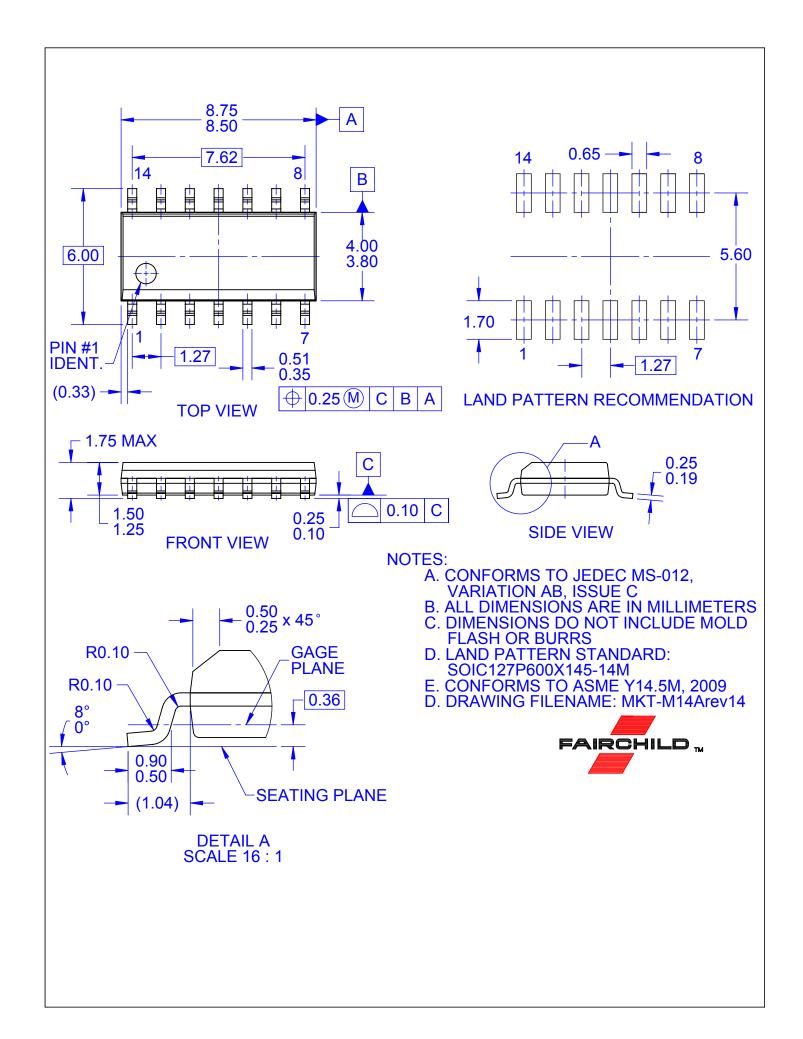
AC Electrical Characteristics

Symbol	Parameter	V _{CC} (V)	C _L (pF)	T _A = 25°C			T _A = -4 +85	Unit	
				Min.	Тур.	Max.	Min.	Max.	
t _{PLH} , t _{PHL}	Propagation Delay Time	2.7	15		6.3	11.4	1.0	13.5	ns
			50		8.8	14.9	1.0	17.0	
		3.3 ± 0.3	15		4.8	7.1	1.0	8.5	
			50		7.3	10.6	1.0	12.0	
t _{OSLH} ,	t _{OSLH} , t _{OSHL} Output to Output Skew ⁽³⁾	2.7	50			1.5		1.5	ns
t _{OSHL}		3.3	50			1.5		1.5	

Note:

3. Parameter guaranteed by design $t_{OSLH} = I t_{PLHm} - t_{PLHn} I$, $t_{OSHL} = I t_{PHLm} - t_{PHLn} I$.


Capacitance


Symbol	Parameter	7	A = 25°	С	T _A = -40°C to +85°C		Unit
		Min.	Тур.	Max.	Min.	Max.	\
C _{IN}	Input Capacitance		4	10		10	pF
C _{PD}	Power Dissipation Capacitance ⁽⁴⁾		18				pF

Note:

4. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation: $I_{CC(opr.)} = \frac{C_{PD} \times V_{CC} \times f_{IN} \times I_{CC}}{4 \text{ (per Gate)}}$

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Logic Gates category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

 74HC85N
 NLUIG32AMUTCG
 CD4068BE
 NL17SG32P5T5G
 NL17SG86DFT2G
 NLV14001UBDR2G
 NLX1G11AMUTCG

 NLX1G97MUTCG
 74LS38
 74LVC32ADTR2G
 MC74HCT20ADTR2G
 NLV17SZ00DFT2G
 NLV17SZ02DFT2G
 NLV74HC02ADR2G

 74HC32S14-13
 74LS133
 74LVC1G32Z-7
 M38510/30402BDA
 74LVC1G86Z-7
 74LVC2G08RA3-7
 NLV74HC08ADTR2G

 NLV74HC14ADR2G
 NLV74HC20ADR2G
 NLX2G86MUTCG
 5962-8973601DA
 74LVC2G02HD4-7
 NLU1G00AMUTCG

 74LVC2G32RA3-7
 74LVC2G00HD4-7
 NL17SG02P5T5G
 74LVC2G00HK3-7
 74LVC2G86HK3-7
 NLX1G99DMUTWG

 NLV7HC1G00DFT2G
 NLV1G08DFT2G
 NLV7SZ57DFT2G
 NLV74VHC04DTR2G
 NLV27WZ86USG
 NLV27WZ00USG

 NLU1G86CMUTCG
 NLU1G08CMUTCG
 NL17SZ32P5T5G
 NL17SZ00P5T5G
 NL17SH02P5T5G
 74AUP2G00RA3-7

 NLV74HC02ADTR2G
 NLX1G332CMUTCG
 NL17SG86P5T5G
 NL17SZ05P5T5G
 NLV74VHC00DTR2G