

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor and is officers, employees, uniotificated use, even if such claim any manner.

June 1993 Revised April 2005

74LVX273

Low Voltage Octal D-Type Flip-Flop

General Description

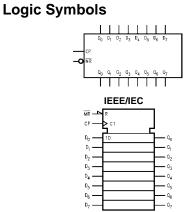
FAIRCHILD

SEMICONDUCTOR

The LVX273 has eight edge-triggered D-type flip-flops with individual D inputs and Q outputs. The common buffered Clock (CP) and Master Reset ($\overline{\text{MR}}$) input load and reset (clear) all flip-flops simultaneously.

The register is fully edge-triggered. The state of each D input, one setup time before the LOW-to-HIGH clock transition, is transferred to the corresponding flip-flop's Q output.

All outputs will be forced LOW independently of Clock or Data inputs by a LOW voltage level on the MR input. The device is useful for applications where the true output only is required and the Clock and Master Reset are common to all storage elements. The inputs tolerate up to 7V allowing interface of 5V systems to 3V systems.


Features

- Input voltage translation from 5V to 3V
- Ideal for low power/low noise 3.3V applications
- Guaranteed simultaneous switching noise level and dynamic threshold performance

Ordering Code:

Order Number	Package Number	Package Description						
74LVX273M	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide						
74LVX273SJ	M20D	Pb-Free 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide						
74LVX273MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide						
Devices also available	Devices also available in Tape and Reel. Specify by appending letter suffix "X" to the ordering code.							

Pb-Free package per JEDEC J-STD-020B.

Connection Diagram

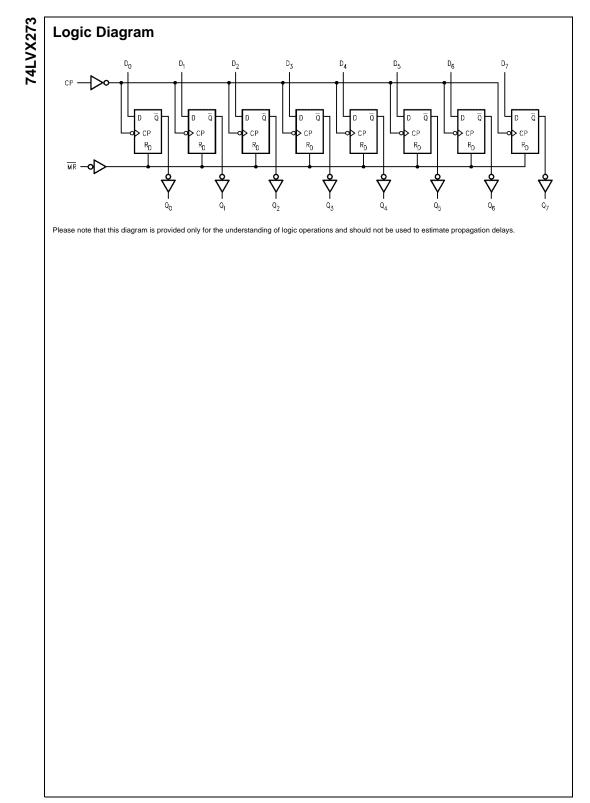
viR —	1	20	- v _{cc}
0 ₀ —	2	19	— Q7
D ₀ —	3	18	— D ₇
D ₁ —	4	17	— D ₆
o ₁ —	5	16	— Q ₆
0 ₂ —	6	15	— Q ₅
D ₂ —	7	14	— D ₅
D3 —	8	13	— D4
Q3 —	9	12	— Q ₄
ND —	10	11	— СР

Pin Descriptions

Pin Names	Description
D ₀ -D ₇	Data Inputs
MR	Master Reset
СР	Clock Pulse Input
Q ₀ –Q ₇	Data Outputs

Operating Mode

Truth Table


		-		-		
	MR	СР	D _n	Q _n		
Reset (Clear)	L	Х	Х	L		
Load '1'	Н	~	Н	Н		
Load '0'	Н	~	L	L		
H = HIGH Voltage Level X = Immaterial L = LOW Voltage Level						

Inputs

© 2005 Fairchild Semiconductor Corporation DS011614

www.fairchildsemi.com

Outputs

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC}) DC Input Diode Current (I _{IK})	-0.5V to +7.0V
$V_{\rm I} = -0.5V$	–20 mA
DC Input Voltage (V _I)	-0.5V to 7V
DC Output Diode Current (I _{OK})	
$V_{O} = -0.5V$	–20 mA
$V_O = V_{CC} + 0.5V$	+20 mA
DC Output Voltage (V _O)	–0.5V to V _{CC} + 0.5V
DC Output Source	
or Sink Current (I _O)	±25 mA
DC V _{CC} or Ground Current	
(I _{CC} or I _{GND})	±75 mA
Storage Temperature (T _{STG})	-65°C to +150°C
Power Dissipation	180 mW

Recommended Operating Conditions (Note 2)

Supply Voltage (V _{CC})	2.0V to 3.6V
Input Voltage (V _I)	0V to 5.5V
Output Voltage (V _O)	0V to V _{CC}
Operating Temperature (T _A)	-40°C to +85°C
Input Rise and Fall Time ($\Delta t / \Delta V$)	0 ns/V to 100 ns/V

74LVX273

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	Vcc		T _A = +25°C	;	$T_A = -40^{\circ}$	C to +85°C	Units	Conditions		
Cymbol	i urumeter	-00	Min	Тур	Max	Min Max		onito	Conditions		
VIH	HIGH Level	2.0	1.5			1.5					
	Input Voltage	3.0	2.0			2.0		V			
		3.6	2.4			2.4					
VIL	LOW Level	2.0			0.5		0.5				
	Input Voltage	3.0			0.8		0.8	V			
		3.6			0.8		0.8				
V _{OH}	HIGH Level	2.0	1.9	2.0		1.9			$V_{IN} = V_{IH} \text{ or } V_{IL} \ I_{OH} = -50 \ \mu A$		
	Output Voltage	3.0	2.9	3.0		2.9		V	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -50 \ \mu A$ $I_{OH} = -50 \ \mu A$		
		3.0	2.58			2.48			I _{OH} = -4 mA		
V _{OL}	LOW Level	2.0		0.0	0.1		0.1		$V_{IN} = V_{IH} \text{ or } V_{IL} \ I_{OL} = 50 \ \mu A$		
	Output Voltage	3.0		0.0	0.1		0.1	V	I _{OL} = 50 μA I _{OL} = 4 mA		
		3.0			0.36		0.44		I _{OL} = 4 mA		
I _{OZ}	3-STATE Output	3.6			±0.25		±2.5	μA	$V_{IN} = V_{IH} \text{ or } V_{IL}$		
	Off-State Current								$V_{OUT} = V_{CC}$ or GND		
I _{IN}	Input Leakage Current	3.6			±0.1		±1.0	μA	V _{IN} = 5.5V or GND		
I _{CC}	Quiescent Supply Current	3.6			4.0		40.0	μA	V _{IN} = V _{CC} or GND		

Noise Characteristics (Note 3)

Symbol	Parameter	V _{cc}	T _A = 25°C		Units	C _I (pF)	
			Тур	Limit		0[(p.)	
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	3.3	0.5	0.8	V	50	
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	3.3	-0.5	-0.8	V	50	
V _{IHD}	Minimum HIGH Level Dynamic Input Voltage	3.3		2.0	V	50	
V _{ILD}	Maximum LOW Level Dynamic Input Voltage	3.3		0.8	V	50	

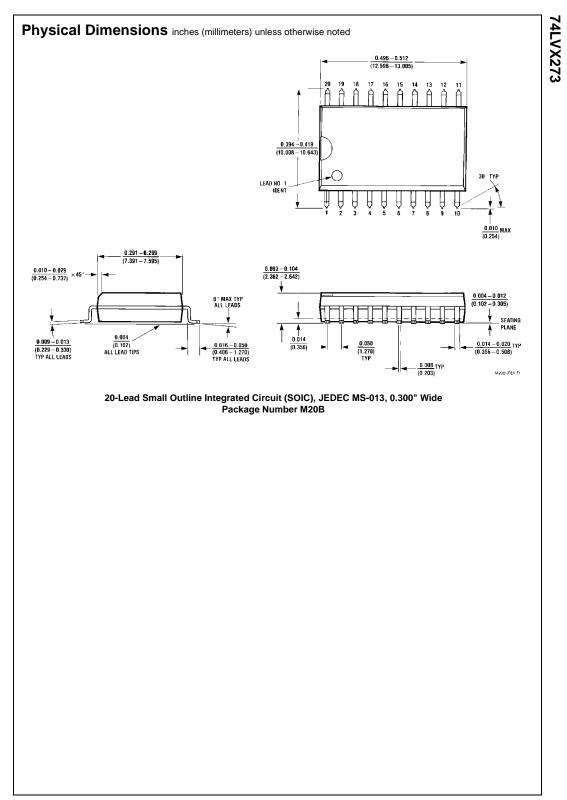
Note 3: Input $t_r = t_f = 3ns$

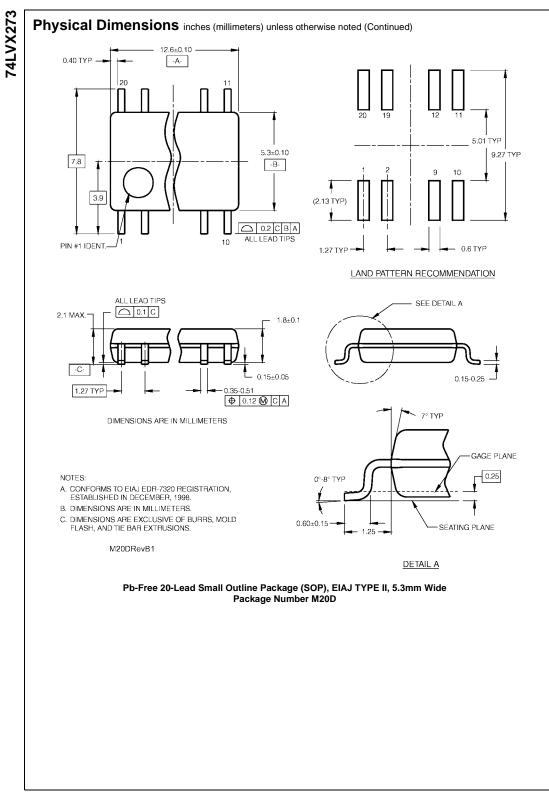
www.fairchildsemi.com

c)
~
2
\mathbf{X}
\mathbf{C}
>
4
N

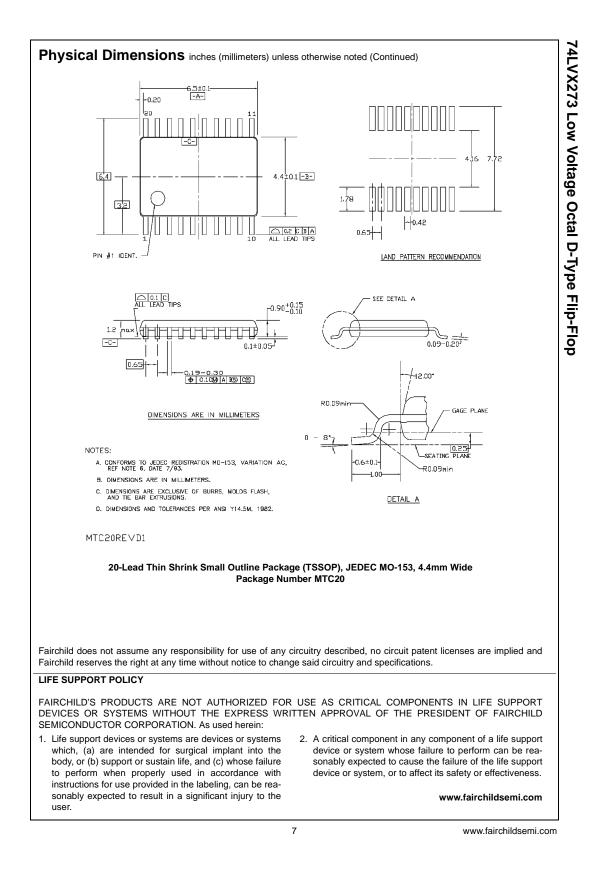
AC Electrical Characteristics

Symbol	Parameter V _{CC}			$T_A = +25^{\circ}C$;	$T_{A} = -40^{\circ}$	C to +85°C	Units	C _L (pF)
Cymbol	Farameter	(V)	Min	Тур	Max	Min	Max	Units	CL (pr)
t _{PLH}	Propagation	2.7		9.0	16.9	1.0	20.5		15
t _{PHL}	Delay Time			11.5	20.0	1.0	24.0	ns	50
	CP to Q _n	$\textbf{3.3}\pm\textbf{0.3}$		7.1	11.0	1.0	13.0	115	15
				9.6	14.5	1.0	16.5		50
t _{PHL}	Propagation Delay	2.7		9.3	17.8	1.0	20.5		15
	MR to Q _n			11.8	21.1	1.0	24.0	ns	50
		$\textbf{3.3}\pm\textbf{0.3}$		7.3	11.5	1.0	13.5	115	15
				9.8	15.0	1.0	17.0		50
t _S	Setup Time	2.7	8.0			9.5		20	
	D _n to CP	$\textbf{3.3}\pm\textbf{0.3}$	5.5			6.5		ns —	
t _H	Hold Time	2.7	1.0			1.0		20	
	D _n to CP	$\textbf{3.3}\pm\textbf{0.3}$	1.0			1.0		ns	
t _{REC}	Removal Time	2.7	4.0			4.0			
	MR to CP	$\textbf{3.3}\pm\textbf{0.3}$	2.5			2.5		ns —	
t _W	Clock Pulse	2.7	8.0			9.5		ns	
	Width	$\textbf{3.3}\pm\textbf{0.3}$	5.5			6.5		115	
t _W	MR Pulse	2.7	7.5			8.5			
	Width	$\textbf{3.3}\pm\textbf{0.3}$	5.0			6.0		ns —	
f _{MAX}	Maximum	2.7	55	110		45			15
	Clock		45	60		40			50
	Frequency	$\textbf{3.3}\pm\textbf{0.3}$	95	150		80		MHz	15
			60	90		50			50
t _{OSLH}	Output to Output	2.7			1.5		1.5		50
tOSHL	Skew (Note 4)	3.3		1	1.5	1	1.5	ns	


Note 4: Parameter guaranteed by design. $t_{OSLH} = |t_{PLHm} - t_{PLHn}|, t_{OSHL} = |t_{PHLm} - t_{PHLn}|$


Capacitance

Symbol	Parameter		T _A = +25°C		$T_A = -40^{\circ}$	Units	
	i arameter		Тур	Max	Min		Max
CIN	Input Capacitance		4	10		10	pF
C _{OUT}	Output Capacitance		6				pF
C _{PD}	Power Dissipation		31				pF
	Capacitance (Note 5)						


Note 5: CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation: $I_{CC(opr.)} = \frac{C_{PD} \times V_{CC} \times f_{|N} + I_{CC}}{8 \text{ (per F/F)}}$

www.fairchildsemi.com

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Flip-Flops category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

NLV14027BDG NLX1G74MUTCG 703557B 5962-90606022A 5962-9060602FA NLV14013BDR2G M38510/30104BDA M38510/07106BFA NTE4598B 74LVC74APW-Q100J 74LCX16374MTDX 74LVT74D,118 74VHCT9273FT(BJ) MM74HC374WM 74LVX74MTCX CD40174BF3A HMC723LC3CTR 5962-8681501RA MM74HCT273WM SN74LVC74APW SN74LVC74AD SN74HC273DWR MC74HC11ADG M74HC175B1R M74HC174RM13TR 74ALVTH16374ZQLR 74ALVTH32374ZKER 74VHC9273FT(BJ) 74VHCV374FT(BJ) 74VHCV574FT(BJ) SNJ54ALS574BJ SN74LVC74ADR SN74HC574PWR SN74HC374AN SN74AS574DWR SN74ALS175NSR SN74HC175D SN74AC74D 74AHC1G79GV.125 74AHC74D.112 74HC112D.652 74HC574D.652 74HCT173D.652 74HCT374D.652 74AHC574D.118 74AHCT1G79GW.125 74HC273D.652 74HC74D.653 74HC107D.652 74HC574D.653